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CHEMISTRY

MOLECULAR NANOPARTICLES (MNPs)

Molecular Nanoparticles = molecular clusters with the same structure as a bulk metal oxide, and greater than 1 nm in size.

/ Cerium Dioxide (CeO,) Magnetic Iron Oxides LnMnO, Perovskites

Iron oxides are important materials with variety of applications, e.g., magnetic storage, o o Perovskite manganites (AMnOs) exhibit important and diverse
Cerium dioxide (ceria, CeO,) exhibits the fluorite lattice and has been catalysts, and biomedical applications. Our group has synthesized and characterized MNPs of | to] to[ t magnetic properties, with nanoscale modifications being a key area
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Supramolecular Aggregates Bioinorganic Chemistry

Single-Molecule Magnets (SMMs)

Supramolecular aggregates of molecules are ordered systems of molecular subunits that The oxygen-evolving complex (OEC) in plants and cyanobacteria is a Mn,Ca-oxo complex that
. SMMs are ultra-small nanoscale retain their intrinsic properties. In the Christou group, we utilize a variety of magnetic undergoes a light-induced oxidation reaction to split water molecules into oxygen gas,
- permanent magnets below a certain molecules as supramolecular subunits linked together through covalent bonds. Magnetic protons, and electrons.
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Giant molecules (>30 metal centers) display both quantum properties can be adjusted. In the case of SMMs, quantum tunneling of magnetization can be | of |
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and classical properties, such as the giant Mng, torus. These
are the largest Mn/O clusters and SMMs to date.

observed in the hysteresis at low temperature. Quantum properties and interactions between
magnetic subunits can be measured through EPR and DPV techniques, respectively.
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