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ABSTRACT: We study intramolecular electron transfer in the single-molecule magnetic
complex [Mn12O12(O2CR)16 (H2O)4] for R = −H, −CH3, −CHCl2, −C6H5, and −C6H4F
ligands as a mechanism for switching of the molecular dipole moment. Energetics is obtained
using the density functional theory (DFT) with onsite Coulomb energy correction (DFT +
U). Lattice distortions are found to be critical for localizing an extra electron on one of the
easy sites on the outer ring in which localized states can be stabilized. We find that the lowest-
energy path for charge transfer is for the electron to go through the center via superexchange-
mediated tunneling. The energy barrier for such a path ranges from 0.4 to 54 meV depending
on the ligands and the isomeric form of the complex. The electric field strength needed to
move the charge from one end to the other, thus reversing the dipole moment, is 0.01−0.04
V/Å.

1. INTRODUCTION
[Mn12O12(O2CR)16(H2O)4] (with R = −H, −CH3, −CHCl2,
−C6H5, and −C6H4F) or “Mn12” for brevity is the prototype
single-molecule magnet (SMM). First synthesized in 1980,1 it
is also the first SMM to demonstrate quantum tunneling of
magnetization.2−4 Compared to solid-state magnetic materials,
advantages of materials based upon SMMs include small size,
perfect monodispersity, low cost, and wide variety of ligands.
From a practical point of view, SMMs deposited on a large
variety of substrates serve as a prolific platform for prototype
device investigation because of their high blocking temper-
atures and abundant choice of ligands for use in tuning the
properties of SMMs.5−7 SMMs have been considered as
candidates for high-density information storage due to the
coexistence of electric and magnetic dipoles2,8−10 and
potentially strong magnetoelectric coupling.11−13 SMMs also
have potential applications in high-sensitivity sensors,14−16

controllable molecular switches for spintronics applica-
tions,17−19 and quantum information processing as qubits.3,20

Functionality of electronic devices can be achieved by
manipulating SMM electronic states by electric field,21,22 gate
voltage,23 magnetic field,24 or circularly polarized radiation.25

Functionality of writing and reading information from SMMs
has been demonstrated recently.21,26

Switching the dipole moment of an SMM can modify its
structural and electronic configuration.27 There are several
dipole-switching mechanisms in different SMMs, including
ferroelectric polarization,28 asymmetric metal electrode screen-
ing,29 carrier trapping/detrapping,30,31 and dipole−electric

field interaction.32 Intramolecular electron transfer is another
way a molecule can switch its dipole moment. In metal−
organic and covalent−organic frameworks, metal atoms form
metal−oxide columns that work as paths for electron
transfer.33−40 A similar charge-transfer pathway may also
exist in Mn12. We suggest that a possible pathway for electron
movement from one peripheral Mn atom to another in Mn12
may be through the nearest connected oxygen. For synthesiz-
ing new complexes and for developing electronic devices based
on SMMs, it is very important to know the energy barrier for
such electron transfer.
In this work, we use the density functional theory (DFT)

with onsite Coulomb energy correction (DFT + U) to
investigate the intramolecular charge transfer and dipole
switching process. First, we show that when Mn12 is charged,
the added electron is localized on one of the four peripheral
Mn atoms, the so-called “easy sites”, or on four core Mn atoms.
Second, we find the path for moving the electron from a
localized location on one easy-site Mn atom to another easy
site on the opposite side of the molecule. We show that the
lowest-energy path is through the four Mn atoms in the center
part (core) of the molecule. The energy barrier for such
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electron transfer is studied by the nudged elastic band (NEB)
method.41−43 Third, we also study the impact of different
ligands on the energy barrier. Finally, we estimate the electric
field needed to initiate such an electron transfer process.
The rest of the paper is organized as follows. The

Computational Approach section describes our methodology
for calculating localized states in an Mn12 complex, the energy
barrier for electron transfer from one localized state to another,
and technical details of calculations. The Results section
presents the geometry and electronic configurations of the
molecular states studied, the calculated energy barriers for
Mn12 SMM for the R = −H, −CHCl2, −CH3, −C6H5, and
−C6H4F ligands, and the shift of the energy levels as a function
of the electric field.

2. COMPUTATIONAL APPROACH
All calculations are based on the DFT as implemented in the
Vienna ab initio simulation package (VASP).44,45 We used the
Perdew−Burke−Ernzerhof (PBE) exchange-correlation energy
functional46 and projector-augmented wave (PAW) pseudo-
potentials.47 The plane-wave energy cutoff was set to 450 eV.
The energy and force convergence tolerances were set to 10−8

eV and 0.001 eV/Å, respectively. Phonon calculations were
done with the Phonopy package.48,49 We included 10 Å
vacuum between periodic SMMs and incorporated the dipole
correction50,51 for both energy and potential. In the case of
charged systems, a uniform background charge (jellium) was
assumed to avoid divergence of the total energy.52 Brillouin
zone sampling was via the single Γ point. We used spin-
polarized calculations and applied the rotationally invariant
DFT + U method53,54 for Mn d-orbitals with the on-site
Coulomb interaction parameter U set to 4 eV. That value
produces the correct Mn magnetic moment in such
systems.55,56 The external electric field is modeled by a saw-
tooth potential.57

The energy barrier for electron transfer from one Mn to
another was calculated using the NEB method41−43 as
implemented in VASP. To ensure that the electron remains
localized on either side of the barrier along the path, the
intermediate images in the NEB method start from the
configurations calculated from the conventional two-state
model.58−61 In it, we consider two states for localization of
an extra electron on one Mn atom (1) and on another (2),
consider the displacement of those atoms according to reaction
coordinates using linear interpolation between initial and final
positions, and allow all atoms except those two Mn atoms to
relax. The NEB calculations then were done using
preconverged configurations obtained from the conventional
two-state model with fixed two Mn atoms.
We have studied several ligands, R = −H, −CHCl2, −CH3,

−C6H5, and −C6H4F. The unit cell in the calculation contains
one such [Mn12]− molecule (again, in short-hand notation),
compensated by a uniform background charge. This allows us
to focus on a single molecule instead of the real crystal
structure of the [Mn12]− complexes, which contains close-
packed negatively charged molecules and positively charged
counterions.62−65 Such complexes are computationally much
more expensive than the simplified systems considered here
since the unit cell contains several SMMs and counterions. The
simplified systems nonetheless provide insight into key issues
of charge transfer and dipole switching. Another reason to
model a separate molecule instead of those close packed in the

crystal form is that applying saw-tooth potential with periodic
boundary condition (PBC) may disturb the crystal.

3. RESULTS
We start from the electronic configuration of the neutral
[Mn12]0 molecule and then consider the electronic config-
uration for the [Mn12]− molecule at the negative charge state
from having an extra electron. Structural stability is confirmed
by the fact that the calculated phonon spectrum has no
imaginary frequencies. The section concludes with the
calculated energy barrier for electron movement inside the
molecule from one Mn atom to another and the electric field
needed to initiate electron transfer.
3 . 1 . N e u t r a l [ M n 1 2 ] 0 C o m p l e x .

[Mn12O12(O2CR)16(H2O)4] contains 12 Mn atoms, as
shown in Figure 1. The first eight Mn atoms (numbered 1−

8 in Figure 1) are located on the peripheral Mn ring of the
molecule. They are in the 3+ charge state, each with four
electrons in the 3d-orbitals with a total spin of S = 2 per Mn
atom; hence, the total spin of the outer ring is S = 16. The
remaining four central Mn atoms (numbered 9−12 in the
Figure 1) form the molecular core [Mn44+O4]. They are in the
4+ charge state.
These Mn atoms have three electrons in the 3d-orbitals with

a total spin of S = 3/2 per atom. The interaction among them
is ferromagnetic; the total core spin of S = 6.62 Eight of the Mn
atoms, comprising all four core Mn atoms and the four
peripheral Mn atoms on the hard sites, and their O neighbors
form two parallel Mn−O planes highlighted by the gray and
yellow areas in Figure 1. The direction perpendicular to those
planes is associated with an easy axis of magnetization for the
molecule.62 Peripheral active (easy) Mn atoms, which are
favorable sites for localization of an extra electron, are shown
by big purple balls (1−3−5−7). They are located between the
two Mn−O planes. Sixteen ligands are shown in Figure 1, eight
around the peripheral ring of eight Mn atoms (connected to
atoms 1−8), four in the front (connected to atoms 1−8, 2−9,
4−5, and 6−11) and four in the back (connected to atoms 6−
7, 8−12, 4−10, and 2−3) of the molecule. Inelastic scattering
experiments66 show that the magnetic interaction between the
Mn4 core and the Mn8 ring is antiferromagnetic. Thus, the
ground state of the neutral [Mn12]0 complex has a total spin of
S = 10. Figure 2 shows the calculated spin distribution of a
[Mn12−H]0 molecule.

Figure 1. Top view (left) and side view (right) of the Mn12 molecule.
Chemical bonds are depicted as red-purple bars, with the red end
connecting oxygen atoms. Thin lines depict the ligands.
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Depending upon the various ligand configurations, the four
water molecules are absorbed on different Mn sites. Those
configurations can be classified as water isomers according to
the location of the four adsorbed water molecules. The
possible isomer forms are 1:1:1:1, 2:1:1, or 2:2, depending on
whether the water molecules are attached to four, three, or two
Mn atoms,63 respectively (see Figure 3). For the 1:1:1:1

configuration, there are three inequivalent Mn atom types, as
pointed out by Pederson et.al.67 In the configuration shown in
Figure 1, the water molecules are attached to Mn atoms
marked as 1−3−5−7. For the 2:2 configuration, water
molecules may be attached to the 1 and 5 (or 3 and 7) Mn
atoms. Thus, there are four nonequivalent Mn atoms in this
isomeric form.

For neutral Mn12, all eight peripheral Mn atoms have
octahedral oxygen environment with Jahn−Teller (JT)
distortion.62 However, these eight Mn atoms are not
equivalent, as shown in Figure 1. The JT elongation axes for
Mn atoms on hard sites (2, 4, 6, and 8) are parallel to the easy
axis of magnetization, whereas the JT elongation axes for Mn
atoms on easy sites (1, 3, 5, and 7) have significant nonzero
angles with respect to the easy axis of magnetization. The Mn
atom on an easy site, e.g., atom 1, is connected to two core Mn
atoms, 9 and 12, through oxygen atoms. This is in contrast to a
Mn atom on a hard site, e.g., atom 2. It is connected to a single
core Mn atom, atom 9, through two oxygen bridges that form a
square. The square geometry of the Mn−O−Mn connection
for the hard site is more rigid than the six-sided shape for the
easy site. Thus, it is easier for the easy site to relax and
accommodate an extra localized electron. That difference is
also manifested by the fact that the water molecules only attach
to the easy sites, as shown in Figure 3.
3.2. Negatively Charged [Mn12]− Complex. Mn12

complexes can accept or lose electrons.62,63,65 When the
SMM molecule charge state is −1; the additional electron
localizes on one of the peripheral easy-site Mn atoms. Its
charge state is changed from Mn3+ to Mn2+. That change can
be confirmed experimentally by measuring the elongation of
Mn−O bond lengths.64 In the [Mn12−H]− complex in the
1:1:1:1 isomeric form (shown in Figure 3a), one water
molecule is attached to each Mn atom on the easy sites. This
form is maintained when an electron is added to the molecule.
The Mn−O bond lengths are increased from 1.937 and 1.929
Å for the Mn3+ atom (Figure 4a) to 2.183 and 2.139 Å for the
Mn2+ atom (Figure 4b). In Figures 4 and 5, the significantly
changed Mn−O bond lengths caused by accepting an extra
electron are highlighted by bold numbers; JT elongation axes
are highlighted by yellow lines. Also shown are the energy
levels of d-electrons of Mn atoms in an octahedral field with
and without JT distortion. In addition to the easy sites on the
periphery, our calculations for a single molecule [Mn12]− in the
unit cell with uniform background charge show that Mn atoms
from the molecular core also can accept a localized electron. In
fact, for an isolated [Mn12−H]− molecule, the resulting state is
predicted to be more stable than one which has an electron
localizing on one of the peripheral easy sites. We calculated
vibrational modes of the [Mn12−H]− molecule with an extra
electron localized at either a peripheral easy site or a center
site. All vibrational frequencies are real (except for three
translational modes), confirming structural stability of both
systems. For all studied structures in −1 charge states, the
calculated total magnetic moments of SMMs were 21 μB.
Figure 4d shows the core Mn atom (marked as 9 in Figure

1) in 4+ charge state, while Figure 4e shows the core Mn atom
in 3+ charge state upon acceptance of the extra electron. As
pointed out by Christou et al.,63 a JT distortion is expected for
the resulting high-spin Mn3+ ion. As may be seen from Figure
4d, the Mn4+ atom does not have a JT elongation axis.
However, after receiving an extra electron, the Mn−O bonds
lengthen (Figure 4e) to form a JT elongation axis
perpendicular to the parallel Mn−O planes in Figure 1. That
also introduces strain in the rigid [Mn4O4] core cubane unit.
With one exception, for all structures studied with an

electron located on the core Mn atom, the JT elongation axes
of the core Mn atom are perpendicular to the parallel Mn−O
planes. The exception is the −CHCl2 ligand. For it, the JT
elongation axis for the core Mn atom lies parallel to the planes.

Figure 2. Iso-surface of spin configuration of a [Mn12−H]0 SMM, top
view (left) and side view (right). Oxygen and carbon atoms are at
vertices of red and gray bars, and hydrogen atoms are at the open
ends of white bars. Spin iso-surfaces are shown by blue (down) and
yellow (up).

Figure 3. Three water isomers of the Mn12 complex. Mn atoms are
purple balls with active sites shown as larger balls. Oxygen atoms are
at vertices of red bars, and hydrogen atoms are at the open ends of
gray bars. Four water molecules, shown as blue-white sticks, can form
the (a) 1:1:1:1, (b) 2:1:1, or (c) 2:2 isomers.
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For the other ligands, localizing an extra electron on one of the
core Mn atoms becomes less energetically favorable or even
unfavorable relative to localizing on one of the easy sites on the
peripheral Mn ring due to the strong ligand field (see Table 1).
Thus, in contrast to −H and −CH3 ligands, the −CHCl2
ligand localization of an extra electron on the outer ring is
energetically more preferable than localization on the core.
This fact also confirms the experimental findings that the
[Mn12−CHCl2] SMM is much more effective in attracting
electrons than the [Mn12−CH3].5
The Mn atom 2 in the 3+ charge state, shown in Figure 4c,

has Mn−O bond lengths identical to those for the Mn atom 1
with the JT elongation axis parallel to the easy axis of
magnetization of the molecule. However, this atom cannot
accept an additional electron (neither can the equivalent 4−6−
8 atoms) because of the rigid square geometry discussed
earlier, so an extra electron initially placed on this atom prefers
to move to Mn atoms 1 or 3.
The 2:2 isomeric form shown in Figure 3c has four water

molecules attached to the 1 and 5 easy sites in pairs, thus
breaking the symmetry between the 1 and 5 sites and the 3 and
7 sites, with the 3 and 7 sites attached to the ligands instead of
water molecules. Our calculations show that an extra electron
placed on 1 is energetically more favorable than for placement
on 3 by 144 meV. Comparison of the 1:1:1:1 and 2:2 isomeric

forms shows that an electron localized on 1 in the 1:1:1:1 form
is less stable by 21 meV than for localization on 1 in the 2:2
isomeric form. This means that in the 2:1:1 isomeric form
(Figure 3b), localization of an extra electron will be more
stable on atom 1, where two water molecules are attached. In
contrast, localization on 3 or 5 will be 21 meV less
energetically favorable and localization on 7 will be ≈150
meV less energetically favorable.
3.3. Energy Barrier for Dipole Switching. We consider

two pathways for electron transfer, either of which can be the
first stage of an electron transfer process that leads to dipole
switching. Both pathways start from the easy site 1. The first
pathway involves electron transfer to the nearest possible
localization on the easy site of the outer ring (3), 1 → 3. The
second pathway is to the nearest Mn atom in the core, 1 → 9.
Table 1 shows the electric dipole moment when the electron is
localized on sites 1, 3, 5, 7, and 9, the difference in energy for
localized states relative to site 1, and the energy barrier for
electron transfer, calculated for an isolated charged [Mn12]−
molecule in a large box with a uniform positive charge
background. The dipole moment P is defined as50,51

P r r R rd ( ) ( )center ions valence= +

where Rcenter is the center of the [Mn12]− molecule and
ρions+valence is the total charge density. As can be seen from
Table 1, transferring an electron from 1 to 3 changes the dipole
direction, whereas transferring an electron 1 → 9 changes the
dipole moment magnitude. In the 1:1:1:1 isomeric form, sites
1 and 3 are equivalent for localization, but in the 2:2 isomers,
those two localized states differ by 144−157 meV, depending
on the ligand (see Table 1). The state with an electron
localized on site 3 in [Mn12−H]− is higher in energy by 144
meV. Transferring an electron 1 → 3 needs to overcome an
energy barrier of 146 meV. Because of this, in the 2:2 isomers,
the 1 → 3 pathway is not likely. Figure 6 shows energy profiles

Figure 4. Calculated Mn−O bond length (in Å) for different Mn
atoms in the [Mn12−H] complex in 1:1:1:1 isomeric form. Mn atoms
are purple balls, oxygen atoms are at vertices of red bars, water
molecule as blue-white bars, and carboxylate groups O2CH as red-
gray-white bars. 9−10−11−12Mn atoms are the core of the complex.
1 Mn atom in 3+ (a) and in 2+ (b) charge states, 2 Mn atom (c), 9
Mn atom in 4+ (d), and in 3+ (e) charge states.

Figure 5. Calculated Mn−O bond lengths (in Å) for 1 and 3 Mn
atoms of [Mn12−H] complex in the 2:2 isomeric form. 1 Mn atom in
3+ (a) and in 2+ (b) charge states, 3 Mn atom in 3+ (c) and in 2+
(d) charge states. For details of the figure, see caption in Figure 4.
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for paths 1 → 3 and 1 → 9 for the [Mn12−H]− complex in
1:1:1:1 isomeric form using the conventional two-state model
and NEB discussed above. Dots on the NEB curve show
several images on the pathway. Displacements 1 → A and 1 →
B correspond to Mn atom shifts to 0.099 and 0.135 Å,
respectively. For 1 → 3, the conventional two-state model
gives an energy barrier of 31.1 meV, whereas the NEB method
finds a pathway with an energy barrier of 5.3 meV. Transferring
an electron from 1 to the core 9 requires the overcoming of an
energy barrier of 0.4 meV to move to the lower-energy state
and create JT distortion on 9 (see Figure 4e).
3.4. Effect of Electric Fields. Applying an external electric

field alters the energetically favorable site on which the extra
electron can be localized. This is the basis for dipole switching.
Here, we apply an electric field computationally to estimate the
strength of an external electric field needed to alter the
localization site. The applied electric field is in the plane of
easy Mn sites and parallel to the projection of the vector from

1 to 9 onto the same plane. Let E1 (E9) be the total energy of
[Mn12]− with the extra electron localized at 1 (9). Figure 7

shows the energy difference δE = E9 − E1 versus electric field
strength . δE changes linearly with and reaches zero at =
−0.034 V/Å for [Mn12−H]−. The negative sign of the electric
field corresponds to the direction of the field from the center of
the molecule to the outside. The sign of the field is defined by
the sign of the energy difference E9 − E1. However, it also
indicates the strength of the ligand field. Thus, for [Mn12−
CH3]− and [Mn12−H]− complexes in 1:1:1:1 isomeric forms,
the electric field direction to align the 1 and 9 states is from the
center of the complex to the outer ring, whereas for the
[Mn12−CHCl2]− complex in 1:1:1:1 isomeric form, the field
direction is reversed, indicating significant own-field for the
electronegative −CHCl2 ligand. The slope of the δE depend-
ence upon (see Figure 7) can be associated with the electric
displacement D of the media according to

Table 1. Electron Localization Energy Differences (in meV) Between Outer State 1 and Core State 9, and Between 1 and 3
Outer States, Energy Barriers (in meV) for Electron Transfer From 1 → 3 and 1 → 9, Electric Field for Initiation of Dipole
Switching, Slope Coefficients 1/2δD, and Electric Dipole Moment of the States in Mn12 Complexes with Different Ligandsa

ligand
water
isomer

energy
difference
E3 − E1

energy
difference
E9 − E1

energy
barrier for

1 → 3

energy
barrier for

1 → 9

electric
field
(V/Å)

1/2δD
(meV /(V/ Å))

electric dipole moment P (in x,y,z) (e × Å)

1 3 5 7 9

−H 1:1:1:1 0 −24 5.3 0.4 −0.034 −808 −1.134 0.242 1.134 −0.242 −0.257
−0.167 -1.233 0.167 1.233 −0.256
−0.098 0.150 −0.098 0.150 −0.002

−CH3 1:1:1:1 0 −11 45 19 −0.014 −896 −1.239 0.553 1.239 −0.553 −0.138
0.565 −1.091 −0.565 1.091 −0.431

−0.015 0.205 −0.015 0.205 0.357
−CHCl2 1:1:1:1 0 +28 5.8 39 +0.031 −925 −1.541 -0.874 1.541 0.874 −0.668

−0.759 0.959 0.759 −0.959 −0.009
0.489 0.342 0.489 0.342 0.177

−H 2:2 +144 +30 146 41 +0.035 −799 −1.223 −0.004 1.223 0.004 −0.349
−0.011 −1.227 0.011 1.227 −0.216
−0.096 0.010 −0.096 0.010 −0.154

−C6H5 2:2 +157 +13 166 54 +0.011 −1098 −1.497 −0.006 1.497 0.006 −0.336
−0.032 −1.603 0.032 1.603 −0.294
−0.028 0.111 −0.028 0.111 −0.218

−C6H4F 2:2 +150 −18 150 36 −0.017 −1090 −1.478 0.023 1.478 −0.023 0.327
−0.007 −1.576 0.007 1.576 −0.285
0.133 0.029 0.133 0.029 0.327

aFor labeling of the atoms see Figure 1. In the 1:1:1:1 isomeric form (Figure 3a), water molecules are attached to 1, 3, 5, and 7 Mn atoms, whereas
in the 2:2 isomeric form (Figure 3c), water molecules are attached to 1 and 5 Mn atoms.

Figure 6. Energy profiles for reactions 1 → 3 and 1 → 9 for [Mn12−
H]− complex in 1:1:1:1 isomeric form using conventional two-state
model (solid black lines) and NEB (dashed line). Blue, green, and
purple dots correspond to localization of electron on 3, 1, and 9,
respectively. Q13 and Q19 are reaction coordinates. Figure 7. Energy difference due to different location of the extra

electron versus electric field.
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where δP = −|P9 − P1|, since D= ε0 + P. Thus, the slope of
δE( ) is proportional to the absolute value of the electric
dipole moment: a larger dipole moment of the complex
corresponds to a larger slope coefficient. For example, for
[Mn12−C6H4F]− and [Mn12−C6H5]− complexes, the slope
coefficients are 1090 and 1098 meV/(V/Å) and dipole
moments |P1| are 1.484 and 1.498 eÅ, respectively, whereas
for [Mn12−H]− complexes, the slope coefficients are 808 and
799 meV/(V/Å), respectively and dipole moments |P1| are
1.150 and 1.227 eÅ. The slope coefficients 1/2δD are
summarized in Table 1. To be sure that our calculation
procedure with saw-tooth potential in PBC is valid, we also
calculated the electric field when the molecules are separated
by 20 Å. The resulting changes in the electric field value are
less than 6%.
Calculated values of electric field strengths to initiate the

dipole switching process for all of the SMMs studied are in
Table 1. We need to point out here that though this field
energetically aligns the two states (1 and 9), it is not enough to
move an electron from one Mn atom to another since doing
that also requires overcoming some activation barrier to make
displacements on atoms, thus making the JT distortion.
However, these calculated values can give some estimation of
the actual electric field for dipole switching. Thus, for −H
ligand, where the activation barrier is only 0.4 meV, thus much
less than the energy difference E9 − E1 of 24 meV, the actual
electric field for electron movement will be very close to 0.034
V/Å.
These calculations consider only isolated [Mn12]− mole-

cules. In some experiments, however, the molecules are in
crystalline form, with counterions in each unit cell.62−64 The
positively charged counterions and [Mn12]− molecules of such
structures impose a crystal electric field upon the [Mn12]−
molecules. We have calculated the crystal electric field imposed
on the Mn12 molecule in the [Mn12−C6H4F] crystal with
lattice parameters a = 17.41 Å, b = 17.41 Å, and c = 23.87 Å.64

Both the crystal electric field in the plane z = c/2 and the
orientation of the [Mn12]− molecule in the crystal are shown in
Figure 8. The field from the periodic counterions and from all
other periodic [Mn12]− molecules is included in the plot, but
the field from the ligands of the molecule itself is not included.
As can be seen from Figure 8, the Mn12 molecule in the crystal
is oriented such that the Mn atoms on the easy sites are located
at points (corners of the blue square) with minimum possible
electric field strength. Thus, the electric field on the easy-site
Mn atoms is 0.022 V/Å, whereas on the hard-site atoms it is
0.063 V/Å. The electric field strength on the core Mn atoms is
0.00025 V/Å.

4. CONCLUSIONS
We have studied different possible pathways for dipole
switching in the [Mn12]− SMM complex with diverse ligands.
Ligands play an important role in the energy barrier for
electron transfer in the various SMM Mn12 molecules. We find
that the extra electron can be localized on the easy sites of the
peripheral Mn ring or any of the four core Mn atoms. For
some ligands, localization on one of the core sites is
energetically preferable for isolated molecules. Lattice dis-
tortions are found to be critical for localizing the extra electron
on one of the easy sites of the peripheral ring. We find that the

lowest-energy path for charge transfer is for the electron to go
through the center via superexchange-mediated tunneling. The
energy barrier for dipole switching is between 0.4 and 54 meV
depending on the ligands and the isomeric form of the
complex. An important semiquantitative finding is the huge
range in energy barriers for dipole switching, more than 2
orders of magnitude. We expect this finding to hold up even if
the smaller barriers turn out to be strongly sensitive to the
particular exchange-correlation functional. The electric field
strength needed to move the charge from one end to the other,
thus reversing the dipole moment, is 0.01−0.04 V/Å.
Parameters for the crystal field and the structures studied are
available for download at M2QM’ GitHub page.68
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