#### Predicting Relative S° Values

See Appendix B for tables of standard molar entropies (S°) at 298 K (25 °C) --Using the ideas of disorder and W.

(1) As temperature increases, entropy increases

Increase in T increases the heat energy, so increases the average kinetic energy of the atoms or molecules, i.e. greater positional disorder, i.e. greater entropy. Fig 20.6 For Cu (s): T (K): 273 295 298 S°: 31.0 32.9 33.2 J/mol.K

(2) When more ordered phase  $\rightarrow$  more disordered phase,  $\Delta S > 0$ Na (s)  $\rightarrow$  Na (g) S°: 51.4 153.6  $\Delta S^{\circ} = 102.2 \text{ J.mol}^{-1}\text{K}^{-1}$  Fig 20.7

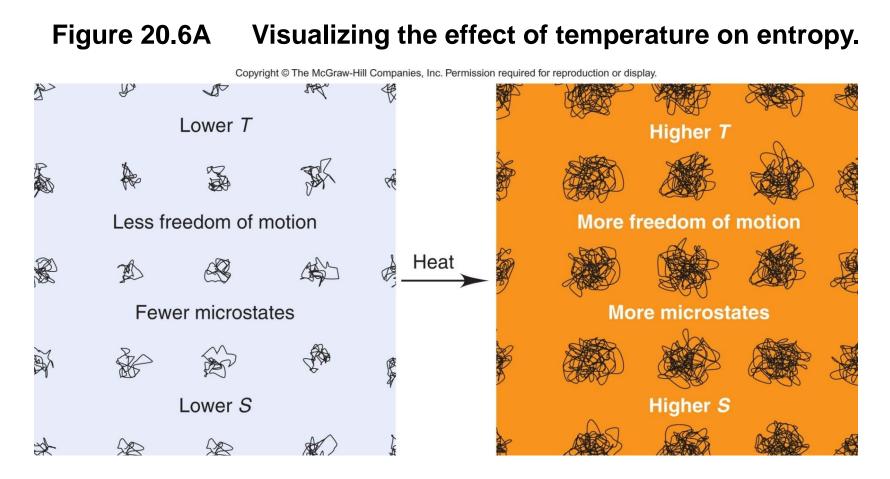
(3) Dissolution of solid or liquid increases its entropy but we must be careful to also consider the entropy of the solvent.

| NaCl (s) = 72.1   | but | AlCl <sub>3</sub> (s) = 110.7 | J/mol.K |
|-------------------|-----|-------------------------------|---------|
| NaCl (aq) = 115.1 |     | AlCl <sub>3</sub> (aq) = -148 | J/mol.K |

 $\Delta S^{\circ}$  for dissolution of NaCl > 0 <u>but</u>  $\Delta S^{\circ}$  for dissolution of AlCl<sub>3</sub> < 0 Fig 20.8

Why? Because although  $AlCl_3$  breaks up into more disordered  $Al^{3+}$  and  $3 Cl^-$ , the water molecules become highly ordered around small, highly charged  $Al^{3+}$ . So, usually,  $\Delta S^\circ$  for dissolution > 0 (positive): occasionally,  $\Delta S < 0$  if it involves small, highly charged ions such as  $Al^{3+}$ .

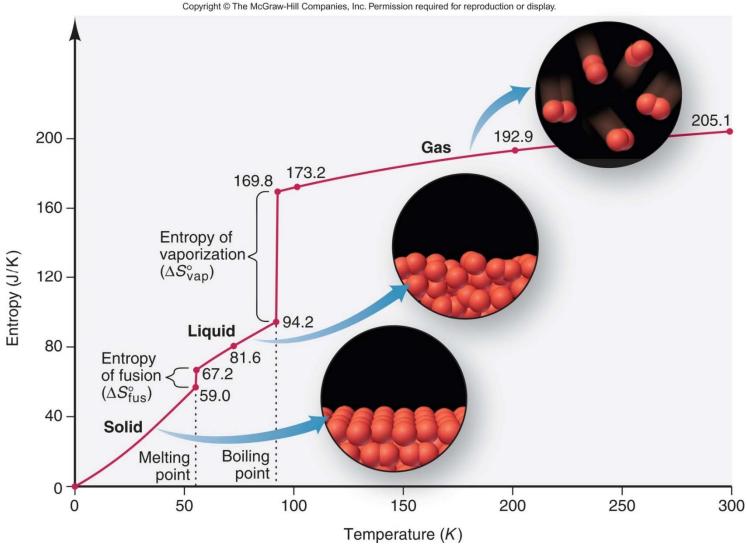




Computer simulations show each particle in a crystal moving about its lattice position. Adding heat increases T and the total energy, so the particles have greater freedom of motion, and their energy is more dispersed. S therefore increases.



# Figure 20.7 The increase in entropy during phase changes from solid to liquid to gas.

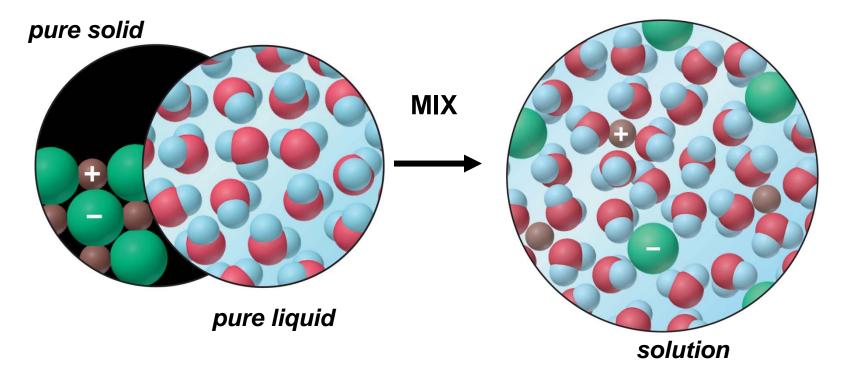




20-3



# Figure 20.8 The entropy change accompanying the dissolution of a salt.



Usually,  $\Delta S^{\circ} > 0$  (positive) for dissolution of solid in liquid, unless a small highly charged ion such as Al<sup>3+</sup> is involved.



<u>For non-ionic substances</u>:  $\Delta S$  much smaller, due to no separation into ions. For mixing H<sub>2</sub>O and MeOH (or EtOH), there is little change to H-bonding interactions  $\therefore \Delta S$  small

Pure MeOH (I): $S^{\circ} = 127$  $\therefore \Delta S^{\circ} = 5 \text{ J.mol}^{-1}.\text{K}^{-1}.$ Fig. 20.9MeOH (aq) $S^{\circ} = 132$ small !

(4) Dissolution of a gas decreases entropy: Gases are very disordered, so dissolution gives a more ordered solution  $\therefore$  entropy <u>always</u> decreases on dissolution. Fig. 20.10 However, mixing one gas into another <u>increases</u> entropy.

(5) Complexity of the substance: For a given phase, S° depends on atomic size and molecular complexity.

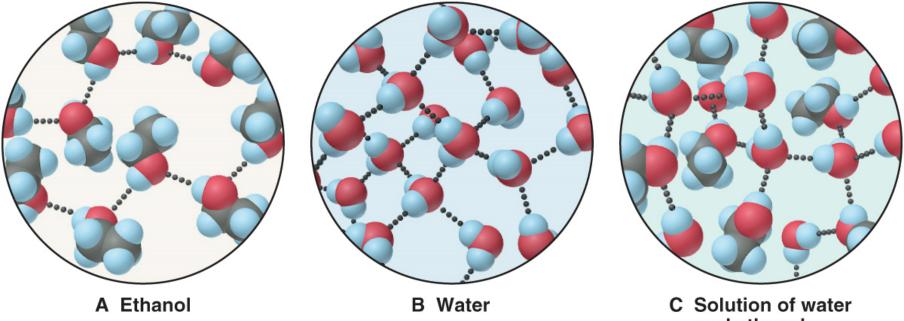
e.g., Li  $\rightarrow$  Na  $\rightarrow$  K  $\rightarrow$  Rb  $\rightarrow$  Cs (down a group) S°(s) 29.1 51.4 64.7 69.5 85.2 J.mol<sup>-1</sup>K<sup>-1</sup>

Also,  $CF_4(g)$  (261.5) <  $CCl_4(g)$  (309.7) J.mol<sup>-1</sup>.K<sup>-1</sup>.



# Figure 20.9 The small increase in entropy when ethanol dissolves in water.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

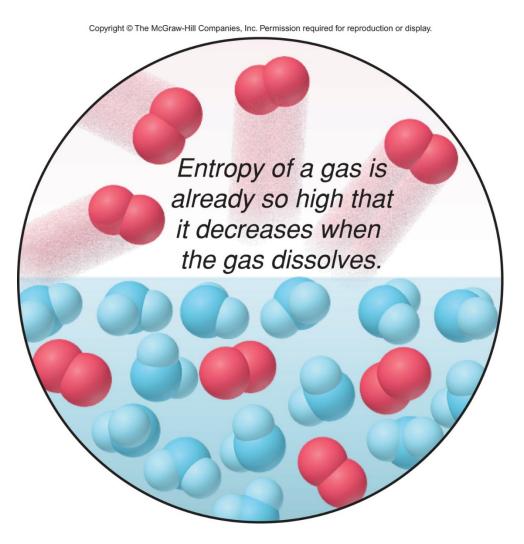


and ethanol

Ethanol (A) and water (B) each have many H bonds between their own molecules. In solution (C) they form H bonds to each other, so their freedom of motion does not change significantly.



#### Figure 20.10 The entropy of a gas dissolved in a liquid.







<u>For different forms of an element</u>, S° less for form with stronger, more directional bonds, *e.g.* C (diamond) vs C (graphite). S° (diamond) < S° (graphite)

<u>For compounds (ionic or molecular)</u>, S° greater for greater complexity (number of atoms/ions involved) (IF phase is the same!) Fig 20.11

e.g.,  $Cl(g) < Cl_2(g)$   $O(g) < O_2(g) < O_3(g)$ 165.1 223.0 16 205 239 J.mol<sup>-1</sup>.K<sup>-1</sup>  $CH_4(g) < C_2H_6(g) < C_3H_8(g) < C_4H_{10}(g)$ 186.1 229.5 269.9 310 J mol<sup>-1</sup> K<sup>-1</sup> e.g., HF < HCl < HBr < HI  $J.mol^{-1}.K^{-1}$ 173.7 186.8 198.6 206.3  $CH_4(g) \leftarrow CH_3OH(g)$ Note: Must compare same phase 186.1 238 (e.g., gas with gas) <u>but</u>  $CH_4$  (g) >  $CH_3OH$  (l) otherwise complexity 186.1 127 rule doesn't hold.



Figure 20.11 Molecular complexity, vibrational motion, and entropy

More atoms = more ways of vibrating = more microstates = more disorder = greater entropy Ν NO NO204  $NO_2$  $N_2O_4$ NO  $NO_2$ N **S**<sup>0</sup> 153.2 211 240 304 J/mol.K

20-9

Sample Problem 20.1

## Predicting Relative Entropy Values

- **PROBLEM:** Choose the member with the higher entropy in each of the following pairs, and justify your choice [assume constant temperature, except in part (e)]:
  - (a) 1 mol of  $SO_2(g)$  or 1 mol of  $SO_3(g)$
  - (b) 1 mol of  $CO_2(s)$  or 1 mol of  $CO_2(g)$
  - (c) 3 mol of  $O_2(g)$  or 2 mol of  $O_3(g)$
  - (d) 1 mol of KBr(s) or 1 mol of KBr(aq)
  - (e) seawater at 2°C or at 23°C
  - (f) 1 mol of  $CF_4(g)$  or 1 mol of  $CCI_4(g)$

For c), number of moles is more important than complexity difference



# 20.2 Calculating Entropy Changes ( $\Delta S^{\circ}$ )

-- it is very useful to be able to predict sign of  $\Delta S^{\circ}$ 

Consider  $N_2(g) + 3 H_2(g) = 2 NH_3(g)$ Change in entropy ( $\Delta S^\circ$ ) =  $S^\circ$  (products) -  $S^\circ$  (reactants)

Prediction:4 moles of gas  $\rightarrow$  2 moles of gas<br/>(greater disorder  $\rightarrow$  less disorder)<br/>(less order  $\rightarrow$  more order)

 $\therefore$  we predict change in entropy ( $\Delta S^{\circ}$ ) will be < 0 (negative)

Calculation:

$$\Delta S^{\circ}_{rxn} = \Delta S^{\circ} = \sum m S^{\circ}_{prod} - \sum n S^{\circ}_{reacts}$$

 $\Delta S^{\circ}_{r \times n}$  = standard entropy of reaction m and n are coefficients in <u>balanced</u> eqn

$$\therefore \Delta S^{\circ} = [2mol.S^{\circ}(NH_{3}) - 1mol.S^{\circ}(N_{2}) - 3mol.S^{\circ}(H_{2})] \therefore \Delta S^{\circ} = [2(193) - 1(91.5) - 3(130.6)] J/K = -197 J/K (note units: this is  $\Delta S^{\circ}$  for the reaction as   
 written above)   
 \therefore \Delta S^{\circ} < 0, as predicted)$$



#### **Further Examples**

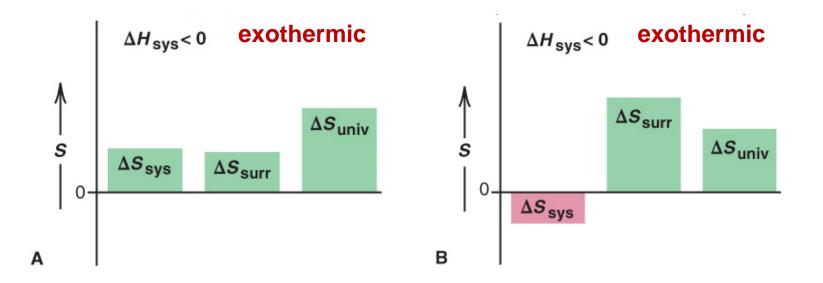
(1) Na (s)  $\rightarrow$  Na (g) prediction: solid  $\rightarrow$  gas,  $\Delta S^{\circ}_{rxn} \geq 0$ calculation:  $\Delta S^{\circ}_{rxn} = S^{\circ}_{prod} - S^{\circ}_{react} = (153.61 - 51.446) \text{ J/K}$   $\therefore \Delta S^{\circ}_{rxn} = 102.16 \text{ J/K}$  (> 0, as predicted) (2)  $C_{3}H_{8}(g) + 5 O_{2}(g) \rightarrow 3 CO_{2}(g) + 4 H_{2}O(l)$ prediction: 6 moles gas  $\rightarrow$  3 moles gas Decrease in disorder  $\therefore$  predict  $\Delta S^{\circ}_{rxn} < 0$ 

**Note**: in a reaction with gases and liquids or solids, gases are so much more disordered than liquids or solids that they dominate what happens to  $\Delta S^{\circ}_{rxn}$ 

# calculation: $\Delta S^{\circ}_{rxn} = S^{\circ}_{prods} - S^{\circ}_{reacts}$ $\Delta S^{\circ}_{rxn} = [3(213.7) + 4(69.9) - 1(269.9) - 5(205.0)] J/K$ $\therefore \Delta S^{\circ}_{rxn} = -374.2 J/K$ (< 0, as predicted)</td>

Now, let's look at  $\Delta S_{surr}$  for the last reaction above:<br/>Burning of propane is a spontaneous r×n, as we all know:<br/>So, since  $\Delta S_{univ} > 0$ , and  $\Delta S_{rxn} < 0$ ,See Fig. 20.13 $\therefore$  it must be that  $\Delta S_{surr} >> 0$  (remember:  $\Delta S_{univ} = \Delta S_{rxn} + \Delta S_{surr}$ )





For an exothermic reaction in which  $\Delta S_{sys} > 0$ , the size of  $\Delta S_{surr}$  is not important since  $\Delta S_{surr} > 0$  for all exothermic reactions. The reaction will always be spontaneous.

For an exothermic reaction in which  $\Delta S_{sys} < 0$ ,  $\Delta S_{surr}$  must be *larger* than  $\Delta S_{sys}$  for the reaction to be spontaneous.

 $\Delta S_{surr}$  is always > 0 for exothermic reactions.



Let's now think about  $\Delta S_{surr}$  more:

It turns out that  $\Delta S_{\text{surr}}$  is related to  $\Delta H_{\text{rxn}}$  !!

Why? Think about it:

 $\Delta H_{rxn}$  gives heat (q) to, or takes heat from surroundings  $\therefore$  the entropy  $\Delta S_{surr}$  of the surroundings will be changed

(A) If  $\Delta H_{rxn} < 0$  (exothermic),  $q_{sys} < 0$ ,  $q_{surr} > 0 \therefore \Delta S_{surr} > 0$ (B) If  $\Delta H_{rxn} > 0$  (endothermic),  $q_{sys} > 0$ ,  $q_{surr} < 0 \therefore \Delta S_{surr} < 0$ 

Thus, heat/enthalpy changes in system cause  $S_{surr}$  to change, and therefore  $\Delta S_{surr} \neq 0$ .

 $\therefore$   $\Delta S_{surr}$  is proportional to -q\_{sys} and temperature (T) of surroundings

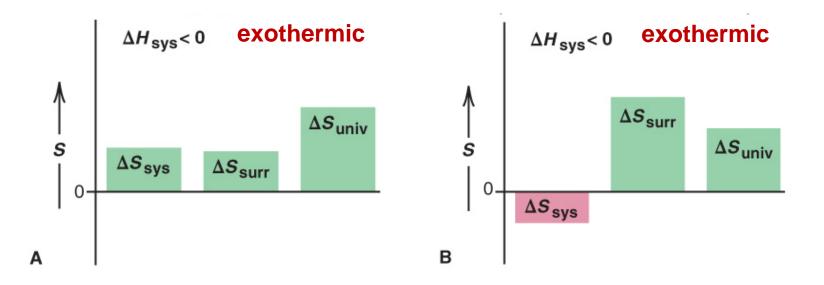
The relationship is:  $\Delta S_{surr} = -\frac{q_{sys}}{T}$   $\therefore$   $\Delta S_{surr} = -\frac{\Delta H_{rxn}}{T}$  Fig 20.13

\*\* So,  $\Delta S_{surr}$  is given by  $\Delta H_{rxn}$  (=  $\Delta H_{sys}$ ) and the T at which the reaction takes place \*\*



#### Let's look at this figure again – it will make more sense now

**Figure 20.13AB** Components of  $\Delta S^{\circ}_{univ}$  for spontaneous reactions.



For an exothermic reaction in which  $\Delta S_{sys} > 0$ , the size of  $\Delta S_{surr}$  is not important since  $\Delta S_{surr} > 0$  for all exothermic reactions. The reaction will always be spontaneous.

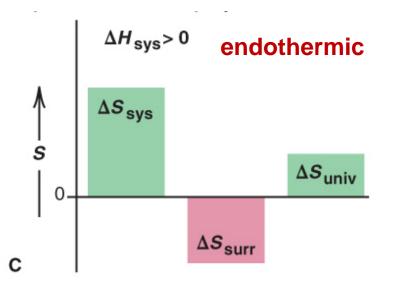
For an exothermic reaction in which  $\Delta S_{sys} < 0$ ,  $\Delta S_{surr}$  must be *larger* than  $\Delta S_{sys}$  for the reaction to be spontaneous.

\*\*  $\Delta S_{surr}$  is always > 0 for exothermic reactions \*\*



#### Also for endothermic reactions – what can we deduce?

**Figure 20.13C** Components of  $\Delta S^{\circ}_{univ}$  for spontaneous reactions.



For an endothermic reaction:  $\Delta S_{surr} < 0$ 

 $\therefore \Delta S_{sys}$  must be **positive and** *greater* than  $\Delta S_{surr}$  for the reaction to be spontaneous.

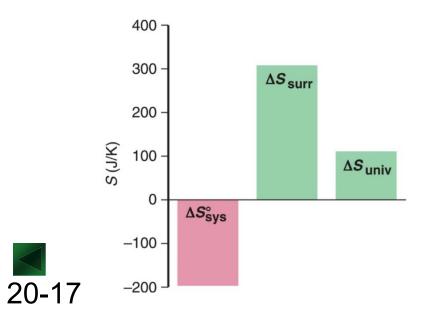


## \*\* $\Delta S_{surr}$ is always < 0 for endothermic reactions \*\*

#### So, consider again: $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

$$\Delta S^{\circ}_{rxn} = -197 \text{ J/K} \text{ (as we calculated)} \Delta H^{\circ}_{rxn} = 2 \text{mol}(-45.9 \text{ kJ/mol})-[1 \text{mol}(0 \text{ kJ/mol}) + 3 \text{mol}(0 \text{ kJ/mol})] = -91.8 \text{ kJ} = -91800 \text{ J} \Delta S^{\circ}_{surr} = -\frac{\Delta H_{rxn}}{T} = -\frac{(-91800 \text{ J})}{298 \text{ K}} = 308 \text{ J/K} \Delta S^{\circ}_{univ} = \Delta S^{\circ}_{sys} + \Delta S^{\circ}_{surr} = -197 \text{ J/K} + 308 \text{ J/K} = 111 \text{ J/K}$$

 $\therefore \Delta S^{\circ}_{univ} > 0$   $\therefore$  the reaction is spontaneous at 298 K (but <u>very</u> slow!)



Although the entropy of the system decreases, this is outweighed by the increase in the entropy of the surroundings.

#### Entropy Changes at Equilibrium

At equilibrium, no net change to the reaction  $\therefore \Delta S_{univ} = 0$  $\therefore \Delta S_{sys} = -\Delta S_{surr}$  (because  $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = 0$ )

Example: $H_2O(I) \Rightarrow H_2O(g)$  $\Delta H_{vaporization} = +40.7 \text{ kJ/mol}$ - this is an equilibrium at 100 °C (373 K)

$$\Delta S^{\circ}_{sys} = \Delta S^{\circ}_{prod} - \Delta S^{\circ}_{react} = (195.9 - 86.8) J/K = 109 J/K$$
  
$$\Delta S^{\circ}_{surr} = \frac{-\Delta H^{\circ}_{sys}}{T} = \frac{-\Delta H^{\circ}_{vap}}{T} = -109 J/K$$
  
$$\therefore \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = 0$$

This is true for both forward and reverse directions ... at equilibrium, no movement away from equilibrium in either direction is spontaneous, *i.e.*, no change.

\*\* <u>Summary</u>: A reaction is spontaneous if  $\Delta S_{univ} > 0$  i.e.  $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$ For a spontaneous reaction: if  $\Delta H < 0$  (exothermic),  $\Delta S_{surr} > 0$  and  $\Delta S_{sys}$  can be >0 or <0if  $\Delta H > 0$  (endothermic),  $\Delta S_{surr} < 0$  and  $\Delta S_{sys}$  <u>must</u> be >0  $\Delta S_{surr} = -\Delta H_{sys}$ At equilibrium, no movement from equilibrium position is spontaneous:  $\Delta S_{sys} = -\Delta S_{surr}$  \*\*



#### 20.3. Free Energy (G) and Work

20 - 19

To avoid considering  $\Delta S_{surr}$  and only consider the system/reaction, define a new thermodynamic quantity called FREE ENERGY (G).

$$G = H - TS \quad \text{and} \quad \Delta G = \Delta H - T\Delta S$$
Remember:  $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} \quad \text{and} \quad \Delta S_{surr} = \frac{-\Delta H_{sys}}{T}$ 

$$\therefore \quad \Delta S_{univ} = \Delta S_{sys} - \frac{\Delta H_{sys}}{T}$$

$$\therefore \quad T\Delta S_{univ} = T\Delta S_{sys} - \Delta H_{sys}$$

$$\therefore \quad -T\Delta S_{univ} = \Delta H_{sys} - T\Delta S_{sys} = \Delta G_{sys} \quad (\therefore \Delta G_{sys} = -T\Delta S_{univ})$$

$$\Delta G_{sys} = \Delta H_{sys} - T\Delta S_{sys} \quad \text{or usually just} \quad \Delta G = \Delta H - T\Delta S$$

Since  $\Delta G_{sys} = -T\Delta S_{univ}$  and  $\Delta S_{univ} > 0$  for a spontaneous reaction:

\*\*  $\Delta G < 0$  (*i.e.*, negative) for spontaneous reaction  $\Delta G > 0$  (*i.e.*, positive) for non-spontaneous reaction  $\Delta G = 0$  for process at equilibrium \*\*

This is the most convenient form of the 2<sup>nd</sup> Law of Thermodynamics i.e. saying  $\Delta G_{sys} < 0$  for a spontaneous reaction is the same as saying  $\Delta S_{univ} > 0$ 

**Note:** Free Energy is a state function and  $\Delta G^{\circ}$  = standard free energy change (kJ/mol)

#### <u>Sample problem 20.4.</u> Calculate $\Delta G^{\circ}_{rxn}$ for

4 KClO<sub>3</sub> (s) 
$$\rightarrow$$
 3 KClO<sub>4</sub> (s) + KCl (s)

<u>Method 1</u>: Calculate  $\Delta H^{\circ}_{rxn}$  and  $\Delta S^{\circ}_{rxn}$ , use  $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ 

 $\Delta H^{\circ}_{rxn} = [3mol(-432.8 \text{ kJ/mol}) + 1mol(-436.7 \text{ kJ/mol})-4mol(-397.7 \text{ kJ/mol})]$   $\Delta H^{\circ}_{rxn} = -144.3 \text{ kJ (exothermic)}$   $\Delta S^{\circ}_{rxn} = [3mol(151.0 \text{ J/mol.K}) + 1mol(82.6 \text{ J/mol.K}) - 4mol(143.1 \text{ J/mol.K})]$   $\Delta S^{\circ}_{rxn} = -36.8 \text{ J/K} = -36.8 \times 10^{-3} \text{ kJ/K}$   $\Delta G^{\circ}_{rxn} = \Delta H^{\circ}_{rxn} - T\Delta S^{\circ}_{rxn} = -144.3 \text{ kJ} - [(298K)(-36.8 \times 10^{-3} \text{ kJ/K})]$  $\Delta G^{\circ}_{rxn} = -133 \text{ kJ (spontaneous)}$ 

#### <u>Method 2</u>: Use $\triangle G^{\circ}_{f}$ values of products and reactants

 $\Delta G_{f}^{\circ}$  = standard free energy of formation = free energy change to make substance from its component elements Like  $\Delta H_{f}^{\circ}$ ,  $\Delta G_{f}^{\circ}$  = 0 for an element in its standard state.

 $\therefore \Delta G^{\circ}_{r \times n} = \sum m \Delta G^{\circ}_{f} (products) - \sum n \Delta G^{\circ}_{f} (reactants)$  $\therefore \Delta G^{\circ}_{r \times n} = 1 \mod (-409.2 \text{ kJ/mol}) + 3 \mod (-303.2 \text{ kJ/mol}) - 4 \mod (-296.3 \text{ kJ/mol})$  $\therefore \Delta G^{\circ}_{r \times n} = -133.6 \text{ kJ} (same as Method 1)$ 

Slight discrepancy due to sig. figs/errors in  $\Delta H^{\circ}_{f}$ , S°, and  $\Delta G^{\circ}_{f}$  values in Appendix B.



## The Meaning of $\Delta G$

20-21

For a spontaneous process,  $\Delta G$  = maximum work (w) the system can do. For a non-spontaneous process,  $\Delta G$  = the minimum work that must be done to the system to make the change happen.

Since  $\Delta G = \Delta H - T\Delta S$   $\therefore \Delta H = \Delta G + T\Delta S$   $\therefore \Delta H = w_{max} + T\Delta S$ 

 $\Delta H$  = heat/energy released by the exothermic reaction  $\Delta G$  =  $w_{max}$  = portion usable to do work  $T\Delta S$  = portion lost as entropy change

*i.e.*, part of the energy released ( $\Delta H$ ) goes into an entropy change and is not available to do work.

Consider burning of octane in a car engine:  $C_8H_{18}(I) + 12\frac{1}{2}O_2(g) \rightarrow 8 CO_2(g) + 9 H_2O(g)$ Very exothermic ( $\Delta H < 0$ ), and  $\Delta S > 0$  ( $12\frac{1}{2}$  moles gas  $\rightarrow 17$  moles gas)  $\Delta H = \Delta G + T\Delta S = w_{max} + T\Delta S$ 

 $\Delta G$  is portion of  $\Delta H$  usable to do work (drive car wheels). T $\Delta S$  portion lost as increased entropy of car engine (temperature) and surrounding air  $\therefore$  not usable for work.

<u>Also:</u>  $\Delta G = w_{max}$ : in practice, we cannot get maximum amount, because of further losses to *e.g.*, friction. Fraction of  $\Delta G$  used determines the efficiency of the process: **no process is 100% efficient**.



#### Effect of Temperature on Reaction Spontaneity

Most exothermic reactions are also spontaneous because the  $\Delta H$  contribution to  $\Delta G \gg$  than the entropy contribution (T $\Delta S$ ), *i.e.*, the negative  $\Delta H$  helps make  $\Delta G$  negative. However, in many cases the T can change the importance of the T $\Delta S$  term.

Let's look at the possibilities (and assume  $\Delta H$  and  $\Delta S$  are approximately independent of T, which is true if no phase change (e.g., s to g) occurs.

| ΔH° | ∆S° | - <b>T</b> ∆S° | Δ <b>G</b> ° | Conclusion                      |
|-----|-----|----------------|--------------|---------------------------------|
| -   | +   | -              | -            | reaction spont. at all T        |
|     |     |                |              | $\Delta G^{\circ}$ < 0 at all T |
| +   | -   | +              | +            | $\Delta G > 0$ at all T         |
|     |     |                |              | reaction non-spont. at all T    |
| -   | -   | +              | + or -       | $\Delta G < 0$ at low T         |
|     |     |                |              | ∴ spont. at low T               |
|     |     |                |              | $\Delta G > 0$ at high T        |
|     |     |                |              | ∴ non-spont. at high T          |
| +   | +   | -              | + or -       | $\Delta G > 0$ at low T         |
|     |     |                |              | ∴ non-spont. at low T           |
|     |     |                |              | $\Delta G < 0$ at high T        |
|     |     |                |              | ∴ spont. at high T              |

 $\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ}$ 



**Examples**:

(a)  $2 H_2O_2(I) \rightarrow 2 H_2O(I) + O_2(g) \quad \Delta H < 0, \Delta S > 0$   $\therefore$  Spontaneous at all T (b)  $3 O_2(g) \rightarrow 2 O_3(g) \quad \Delta H > 0, \Delta S < 0$   $\therefore$  non-spontaneous at all T (c)  $2 H_2O(g) \rightarrow 2 H_2(g) + O_2(g) \quad \Delta H > 0, \Delta S > 0$   $\therefore$  non-spontaneous at lower T, spontaneous at higher T (d) Na (s) +  $Cl_2(g) \rightarrow 2 NaCl(s) \quad \Delta H < 0, \Delta S < 0$  $\therefore$  spontaneous at lower T, non-spontaneous at higher T

 $\Delta G^{\circ} < 0$  at 298 K  $\therefore$  reaction is <u>spontaneous</u> But  $\Delta H^{\circ} < 0$  and  $\Delta S^{\circ} < 0 \therefore$  expect non-spont. at high enough T

```
So, is it spontaneous at 900 °C? (i.e. at T = 1173 K?)

ΔG° = ΔH° - TΔS°

= -198.4 kJ - (1173 K)(-187.9 J/K)(10<sup>-3</sup> kJ/J)

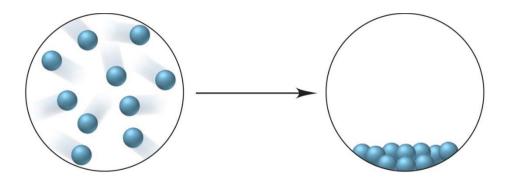
∴ ΔG° = 22.0 kJ ∴ non-spontaneous at 900 °C
```



Sample Problem 20.6

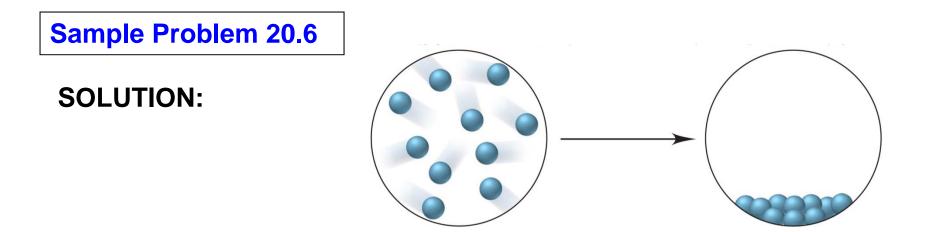
Using Molecular Scenes to Determine the Signs of  $\Delta H$ ,  $\Delta S$ , and  $\Delta G$ 

**PROBLEM:** The following scenes represent  $H_2O(g) \rightarrow H_2O(I)$ 



- (a) What are the signs of  $\Delta H$  and  $\Delta S$  for this process? Explain.
- (b) Is the process spontaneous at all T, no T, low T, or high T? Explain.
- **PLAN:** (a) From the scenes, we determine any change in the amount of gas, which indicates the sign of  $\Delta S$ , and any change in the freedom of motion of the particles, which indicates whether heat is absorbed or released.
  - (b) To determine reaction spontaneity we need to consider the sign of  $\Delta G$  at different temperatures.





(a) The scene represents the condensation of water vapor, so the amount of gas decreases dramatically, and the separated molecules give up energy as they come closer together.

# $\Delta S < 0$ and $\Delta H < 0$

(b) Since  $\Delta S$  is negative and  $\Delta H$  is negative, the  $-T\Delta S$  term is positive. In order for  $\Delta G$  to be < 0, the temperature must be high.

# The process is spontaneous at low temperatures



**Temperature at which Reaction becomes Spontaneous** 

When signs of  $\Delta H$  and  $\Delta S$  are the same, the sign of  $\Delta G$  changes with T. At which T will this happen??

Crossover from  $\Delta G < 0$  to  $\Delta G > 0$  (or vice-versa) occurs when  $\Delta G^{\circ} = 0 = \Delta H^{\circ} - T\Delta S^{\circ}$ .  $\therefore$  when  $\Delta H^{\circ} = T\Delta S^{\circ}$  i.e. crossover is at  $T = \Delta H^{\circ}$  Fig. 20.15  $\Delta S^{\circ}$ 

**Example:**  $Cu_2O(s) + C(s) \rightarrow 2 Cu(s) + CO(g)$ 

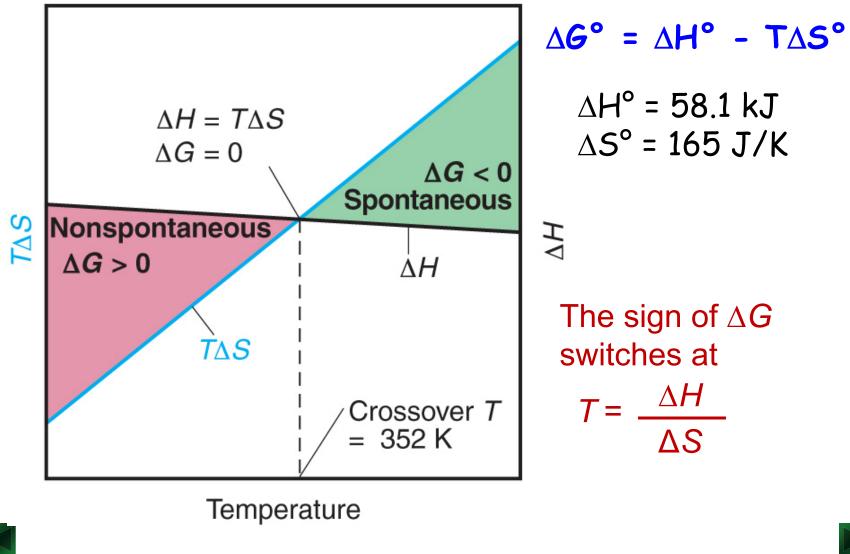
 $\Delta H^{\circ} = 58.1 \text{ kJ} \quad \Delta S^{\circ} = 165 \text{ J/K}$ 

At room temperature (298 K):  $\Delta G = 58.1 \text{ kJ} - (298 \text{ K})(165 \text{ J/K})(10^{-3} \text{ kJ/J})$  $\therefore \quad \Delta G = 8.9 \text{ kJ} \therefore \text{ non-spontaneous}$ 

At what T does it become spontaneous?  
Spontaneous when 
$$\Delta G = 0$$
, *i.e.*,  $\Delta H^{\circ} = T\Delta S^{\circ}$   
 $\therefore T = \frac{\Delta H^{\circ}}{\Delta S} = \frac{58.1 \text{kJ}}{(165 \text{J}/\text{K})(10^{-3} \text{kJ}/\text{J})} = 352 \text{ K} (79 \text{ °C})$ 



Figure 20.15 The effect of temperature on reaction spontaneity.





#### <u>Coupling Reactions to Drive a Non-Spontaneous Reaction</u>

The negative  $\Delta G$  of a spontaneous reaction can be used to drive another reaction in its non-spontaneous direction.

Example 1: Making copper metal from  $Cu_2O$ .

(1)  $Cu_2O(s) \to 2 Cu(s) + \frac{1}{2} O_2(g)$  At 375 K,  $\Delta G_{375} = 140 \text{ kJ} \therefore$  non-spontaneous Also at 375 K (2)  $C(s) + \frac{1}{2} O_2(q) \to CO(q)$   $\Delta G_{375} = -143.8 \text{ kJ} \therefore$  spontaneous

Combine reactions (1) and (2); *i.e.*, add together and cancel  $O_2$ 

 $Cu_2O(s) + C(s) \rightarrow 2 Cu(s) + CO(g)$   $\Delta G_{375} = -3.8 \text{ kJ}$   $\therefore$  spontaneous

Thus, mixing C (s) with  $Cu_2O$  (s) allows reaction (2) to drive reaction (1).

... We can drive a non-spontaneous reaction by combining it with a sufficiently spontaneous one.

**Note:** the strategy is to find a very exothermic reaction of the  $O_2$  that would be liberated if the non-spont reaction (1) occurs,



Example 2: reversing the rusting of Fe to get Fe (s).

Let's assume rust is  $Fe_2O_3$  (it is actually a mixture of hydrated  $Fe^{3+}$  oxides ( $Fe_2O_3 \cdot nH_2O$ , FeO(OH) and  $Fe(OH)_3$ ).

(1) 2  $\operatorname{Fe}_2O_3$  (s)  $\rightarrow$  4 Fe (s) + 3  $O_2$  (g)  $\Delta G^\circ$  = +1487 kJ (very nonspont)

(2) 2 CO (g) + 
$$O_2(g) \rightarrow 2 CO_2(g)$$
  $\Delta G^\circ = -514.4 \text{ kJ}$ 

(2') 6 CO (g) + 3  $O_2$  (g)  $\rightarrow$  6 CO<sub>2</sub> (g)  $\triangle G^{\circ} = -1543 \text{ kJ}$ 

Use (2) to drive (1) i.e., add 1 and 2'

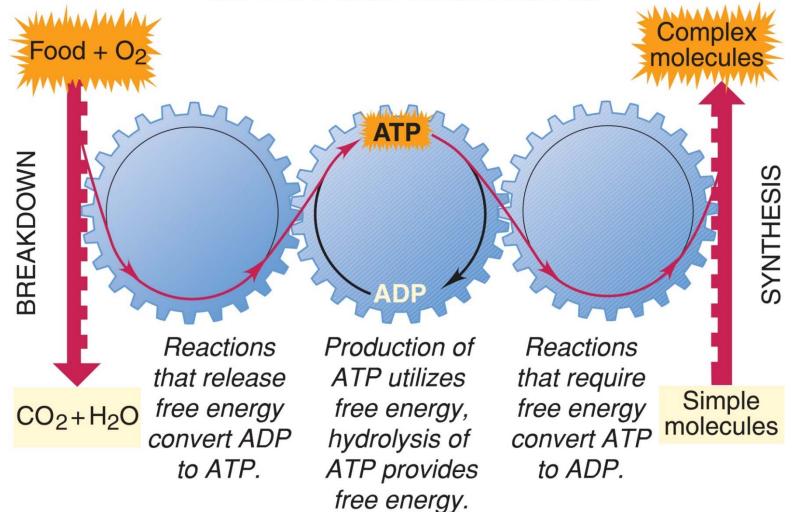
2  $Fe_2O_3(s)$  + 6 CO (g)  $\rightarrow$  4 Fe (s) + 6 CO<sub>2</sub> (g)

 $\Delta G^{\circ}$  = -56 kJ  $\therefore$  spontaneous



# *Chemical Connections* Figure B20.2 The cycling of metabolic free energy.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.





#### 20.4. Free Energy and Equilibrium

Consider  $A \rightarrow B$  Q = [B]/[A]

<u>In Chapter 20</u>, we said  $A \rightarrow B$  is the spontaneous direction if  $\Delta G < 0$ .

 $\therefore$  B  $\rightarrow$  A is the non-spontaneous direction.

In Chapter 17, Q < K is the spontaneous direction for left-to-right, where Q = massaction expression.

How are the two rules related?

20-31

$$\begin{array}{l} Q < K \quad \text{i.e.,} \quad \frac{Q}{K} < 1, \text{ spontaneous,} \quad \Delta G < 0 \\ Q > K \quad \text{i.e.,} \quad \frac{Q}{K} > 1, \text{ non-spontaneous,} \quad \Delta G > 0 \\ Q = K \quad \text{i.e.,} \quad \frac{Q}{K} = 1, \text{ equilibrium,} \quad \Delta G = 0 \end{array} \right\} \begin{array}{l} \text{for rxn. left} \longrightarrow \text{ right} \\ i.e., A \longrightarrow B \\ \end{array}$$

How are Q/K and  $\Delta G$  mathematically related? (:  $\ln 1 = 0$  and  $\Delta G = 0$  at equil)  $\Delta G = RT \ln (Q/K)$  $\therefore \ \Delta G = RT \ln Q - RT \ln K$ 

This relationship tells us that the  $\Delta G$  is the difference in free energy between the initial state and final (equilibrium) state. At equilibrium, Q = K  $\therefore \Delta G$  = 0. Thus,  $\Delta G$ depends on the difference in size between Q and K.

When all initial concns. are  $1 \underline{M}$  (or all gas pressures 1 atm), we have standard conditions.

$$\therefore$$
 Q = 1, In Q = 0 and  $\triangle G = \triangle G^{\circ}$ 

 $\therefore \quad \Delta G^{\circ} = -RT \ln K$ 

<u>Very</u> important equation! Table 20.2

Extremely useful relationship between  $\Delta G^{\circ}$  and K !!!

<u>Note</u>: Small change in  $\Delta G$  can give <u>big</u> change in K.

Since most reactions do not begin with reactants in standard conditions, we can calculate equation relating  $\Delta G$  to  $\Delta G^{\circ}$ .

 $\Delta G = \Delta G^{\circ} + RT \ln Q$ 

<u>Note</u>: This allows us to calculate  $\Delta G$  for any initial concn's if we know  $\Delta G^{\circ}$  (which we can calculate from Appendix B, for example).

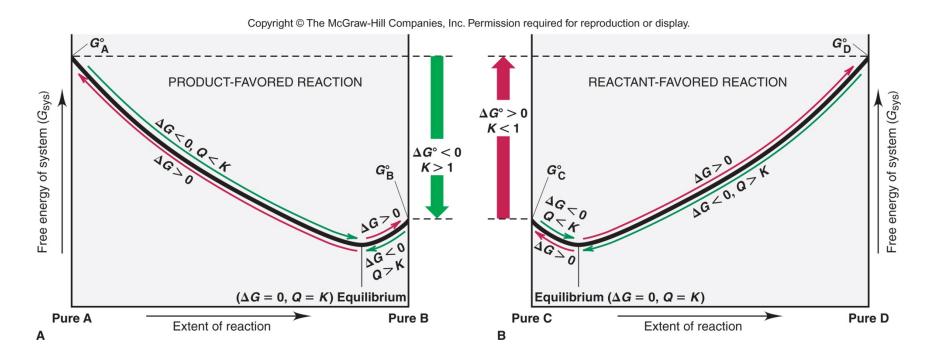


## Table 20.2The Relationship Between $\triangle G^{\circ}$ and K at 298 K

| ∆ <b>G° (kJ)</b> | K                   | Significance                                                         |         |      |
|------------------|---------------------|----------------------------------------------------------------------|---------|------|
| 200              | 9x10 <sup>-36</sup> | Essentially no forward reaction;                                     |         |      |
| 100              | 3x10 <sup>-18</sup> | Treverse reaction goes to completion                                 |         |      |
| 50               | 2x10 <sup>-9</sup>  |                                                                      | FO      | R    |
| 10               | 2x10 <sup>-2</sup>  |                                                                      | ORWARD  |      |
| 1                | 7x10 <sup>-1</sup>  |                                                                      | ARI     | RSE  |
| 0                | 1                   | <b>f</b> Forward and reverse reactions proceed                       | ₽       | RE   |
| -1               | 1.5                 | to same extent                                                       | EACTION | AC-  |
| -10              | 5x10 <sup>1</sup>   |                                                                      | TIO     | TION |
| -50              | 6x10 <sup>8</sup>   |                                                                      | Ž       | 2    |
| -100             | 3x10 <sup>17</sup>  | Forward reaction goes to completion; essentially no reverse reaction |         | '    |
| -200             | 1x10 <sup>35</sup>  | Lessentially no reverse reaction                                     |         |      |



#### Figure 20.16 Free energy and the extent of reaction.



Each reaction proceeds spontaneously (green curved arrows) from reactants or products to the equilibrium mixture, at which point  $\Delta G = 0$ . After that, the reaction is nonspontaneous in either direction (red curved arrows). Free energy reaches a minimum at equilibrium.



#### Sample Problem 19.7

Oxidation of  $SO_2(g)$  is too slow at 298 K to be useful for making sulfuric acid. But is it useful (thermodynamically) to run this reaction at a higher T (*i.e.*, does equilibrium lie more to right)?

 $2 SO_2(g) + O_2 \rightleftharpoons 2 SO_3(g)$ 

Let's compare the reactions at 298 K and 973 K

 $\Delta G^{\circ}_{298} = -141.6 \text{ kJ/mol} \qquad \text{(obtained using } \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}\text{)}$  $\Delta G^{\circ}_{973} = -12.12 \text{ kJ/mol}$ 

What is K at 298 and 973 K?

At 298 K:  $\Delta G^{\circ} = -RT \ln K \therefore \ln K = -(\Delta G^{\circ}/RT)$   $\therefore K = e^{-(\Delta G^{\circ}/RT)}$  $\therefore -(\Delta G^{\circ}/RT) = -\left(\frac{-141.6 \text{kJ} / \text{mol} \times 1000 \text{J} / \text{KJ}}{(8.31 \text{J} / \text{mol}.\text{K})(298 \text{K})}\right) = 57.2$  $\therefore K = e^{57.2} = 7 \times 10^{24} \text{ very big !}$ At 973 K:  $-\Delta G^{\circ}/RT = -\left(\frac{-12.12 \text{kJ} / \text{mol} \times 1000 \text{J} / \text{kJ}}{(8.31 \text{J} / \text{mol}.\text{K})(973 \text{K})}\right) = 1.50$  $\therefore K = e^{1.50} = 4.5 \text{ not big}$ 

:. Reaction much more to the right at lower T, *i.e.*, more product  $SO_3$  at lower T! So need to use T between 298 and 973 to get significant amount of  $SO_3$  at a reasonable rate.

20-35

<u>Question</u>: If we have two vessels each containing 0.50 atm  $SO_2$  / 0.010 atm  $O_2$  / 0.10 atm  $SO_3$ , but one vessel is at 298 K and the other at 973 K, in which direction will the reaction proceed to reach equilibrium at each T?

<u>Answer:</u> Calculate Q and compare to K.

 $\begin{aligned} & \mathsf{Q} = \underbrace{P_{SO_3}^2}_{P_{SO_3}^2} = \underbrace{(0.10)^2}_{(0.50)^2(0.010)} = 4.0 \\ & \underline{At \ 298^5 K}^{\circ} \cdot \circ_2 \mathsf{Q} \ll \mathsf{K} \ (\mathsf{K} = 7 \times 10^{24}), \ \therefore \ \mathsf{rxn.} \ \mathsf{spontaneously \ shifts \ to \ the \ right.} \\ & \underline{At \ 973 \ \mathsf{K}}^{\circ} \cdot \mathsf{Q} \leq \mathsf{K} \ (\mathsf{K} = 4.5), \ \therefore \ \mathsf{rxn.} \ \mathsf{moves \ only \ very \ slightly \ to \ the \ right.} \end{aligned}$ 

Finally, calculate  $\Delta G$  at each T.

 $\Delta G = \Delta G^{\circ} + RT \ln Q$ 

<u>At 298 K</u>:  $\Delta G_{298} = \Delta G_{298}^{\circ} + RT \ln Q$ = (-141.6×10<sup>-3</sup>J/mol)+(8.314 J/K.mol)(298K)ln4.0 = -138.2 kJ/mol

At 973 K: 
$$\Delta G_{973} = \Delta G_{973}^{\circ} + \text{RT In Q}$$
  
= (-12.12×10<sup>-3</sup>J/mol)+(8.314J/K.mol)(973K)In4.0  
= -0.91 kJ/mol

