CHM 2046

Important: Bubble in **A**, **B** or **C** as the test form code at the top right of your answer sheet. <u>Useful information is provided at the end.</u>

VERSION A

- 1. The reaction $A(aq) + 2 B(aq) \rightleftharpoons 2C(aq) + D(aq)$ has $K_c = 14$. At a particular moment in time, [A] = 0.4 M, [B] = 0.5 M, [C] = 1.1 M, and [D] = 1.4 M. Which of the following statements is true?
 - a. Q < K and the reaction is proceeding to the right.
 - b. Q < K and the reaction is proceeding to the left.
 - c. Q > K and the reaction is proceeding to the left.
 - d. Q > K and the reaction is proceeding to the right.
 - e. The reaction is at equilibrium.
- 2. In the following reaction at 600 K, which has $K_c = 6.2 \times 10^3$ and $\Delta H^o = -254$ kJ, 1.0 mol of each substance is introduced into a 1.0 L vessel in the presence of a catalyst and allowed to reach equilibrium at 600 K.

 $P_4S_6(g) + 2 S_2(g) \rightleftharpoons P_4S_{10}(g)$

If the volume of the vessel is then doubled, what will happen?

- a. the concentrations will all decrease, and the reaction will then shift left-to-right.
- b. the concentrations will all increase, and the reaction will then shift right-to-left.
- c. the concentrations will all increase, and the reaction will then shift left-to-right.
- d. the concentrations will all decrease, but the reaction will then not shift.
- e. the concentrations will all decrease, and the reaction will then shift right-to-left.
- 3. Consider the reaction

$$P_4O_6(g) + 2 O_2(g) \rightleftharpoons 2 P_2O_5(g)$$

At a particular moment in time, $p_{\rm O2}$ is found to be increasing. Which of the following statements is true?

- a. $Q_p < K_p$
- b. $Q_p > K_p$
- c. $Q_p = K_p$
- d. $Q_p < 0$
- e. cannot decide without knowing K_c
- 4. At a particular temperature,

$$2 \text{ NO}_2(g) \Rightarrow \text{N}_2(g) + 2 \text{ O}_2(g)$$
 $K_c = 2.5 \text{ x } 10^{-8}$

$$2 \text{ NO}_2(g) \rightleftharpoons 2 \text{ NO}(g) + O_2(g)$$
 $K_c = 5.0 \times 10^{-5}$
Use the above information to calculate the K_c for the reaction below at that temperature.

$$N_2(g) + O_2(g) \rightleftharpoons 2 \text{ NO}(g) \qquad K_c = ?$$

- a. 2.0×10^3
- b. $5.0 \ge 10^{-4}$
- c. impossible to determine
- d. 1.3×10^{-12}
- e. 2.5×10^{-5}

5. What is K_c for the following reaction, whose $K_p = 8.2 \times 10^2$ at 500 K?

$$SOBr_2(g) \rightleftharpoons SO(g) + Br_2(g)$$

- a. 20
- b. 0.050
- c. 3.4×10^4
- d. 8.2×10^2
- e. impossible to determine.

6. At a particular temperature, the p_{Ne} in the following reaction is 2.9 x 10^2 atm at equilibrium, and the moles of IF₃, I₂ and NeF₂ are equal. What is K_p?

$$2 \text{ IF}_3(s) + 3 \text{ Ne}(g) \rightleftharpoons I_2(s) + 3 \text{ NeF}_2(s)$$

- a. 2.4×10^7
- b. $4.1 \ge 10^{-8}$
- c. 3.4×10^{-3}
- d. 2.9×10^2
- e. cannot be determined without the temperature
- 7. Once the reaction $2 A + 2 B \rightleftharpoons C + D$ has reached equilibrium, which of the following statements must be true?
 - a. the forward rate constant is equal to the backward rate constant.
 - b. $K_c < 1$
 - c. [A] = 2[C]
 - d. $K_c < 1$
 - e. the backward reaction rate is equal to the forward reaction rate.
- 8. The reaction $2 \text{ PH}_3(g) \rightleftharpoons P_2(g) + 3 \text{ H}_2(g)$ has $K_c = 8.0$ at a particular temperature. At equilibrium, $[H_2] = 0.24 \text{ M}$ and $[P_2] = 0.20 \text{ M}$. What is $[PH_3]$ at equilibrium?
 - a. $1.5 \times 10^{-2} \text{ M}$ b. $3.5 \times 10^{-4} \text{ M}$
 - b. $3.5 \times 10^{-4} \text{ M}$ c. $1.9 \times 10^{-2} \text{ M}$
 - C. $1.9 \times 10^{-4} \text{ M}$
 - d. $2.4 \times 10^{-4} M$
 - e. cannot be determined without the temperature.

9.

$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$

1.000 atm of SO_2 and 1.000 atm of O_2 were placed in a container, and the reaction

allowed to reach equilibrium. At equilibrium, $p_{O2} = 0.612$ atm. What is K_p ?

- a. 19.6
- b. 4.39
- c. 9.80
- d. 11.4
- e. impossible to determine
- 10. A $3.6 \ge 10^{-3}$ M solution of one of the following acids has pOH = 11.56. Identify the acid. HF, HNO₂, HI, HClO, HCN
 - a. HF
 - b. HI
 - c. HNO_2
 - d. HClO₃
 - e. HCN
- 11. Consider the reaction $2 \text{ KClO}_3(s) \rightleftharpoons \text{KCl}(s) + 3 \text{ O}_2(g)$ at 500 K. At equilibrium, $p_{O2} = 0.20$ atm. What is K_c ?
 - a. $8.0 \ge 10^{-3}$
 - b. 550
 - c. 1.2×10^{-7}
 - d. 125
 - e. impossible to determine.

12.

$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

2.00 M CO and 1.00 M H₂O were placed in a flask and allowed to reach equilibrium at a particular temperature where $K_c = 1.56$. What is the [CO] at equilibrium?

- a. 0.27 M
- b. 0.73 M
- c. 1.27 M
- d. 1.73 M
- e. none of the other answers

13.

$2 \operatorname{CO}_2(g) \rightleftharpoons 2 \operatorname{CO}(g) + \operatorname{O}_2(g)$

2.000 atm of CO₂ are added to a vessel and heated to 100 K. At equilibrium, the p_{CO} was found to be double the p_{O2} . What is the K_c for this reaction at 500K?

- a. 2.00
- b. $5.3 \ge 10^{-2}$
- c. 2.1×10^3
- d. 6.8×10^{-4}
- e. impossible to determine
- 14. The reaction $A \rightleftharpoons B$ has an equilibrium constant $K = 1.0 \times 10^4$ at a certain temperature. Which of the following is true at equilibrium?
 - a. $[A] = (1.0 \times 10^{-4})[B]$
 - b. The reaction lies far to the left-hand side.
 - c. The forward rate constant = the backward rate constant.
 - d. [A] = [B]
 - e. The K for $2B \Rightarrow 2A$ is 2.0×10^4 .
- 15. In the following reaction at 600 K, which has $K_c = 6.2 \times 10^3$ and $\Delta H^o = -254$ kJ, 1.0 mol of each substance is introduced into a 1.0 L vessel in the presence of a catalyst and allowed to reach equilibrium at 600 K.

 $P_4S_6(g) + 2 S_2(g) \rightleftharpoons P_4S_{10}(g)$

If nitrogen gas, $N_2(g)$, is now added to the vessel, what will happen?

- a. $[S_2]$ will decrease and $[P_4S_{10}]$ will increase.
- b. the equilibrium concentrations will stay the same.
- c. $[S_2]$ will increase and $[P_4S_{10}]$ will decrease.
- d. all concentrations will increase.
- e. the value of K_c will increase
- 16. In the following reaction at 600 K, which has $K_c = 6.2 \times 10^3$ and $\Delta H^o = -254$ kJ, 1.0 mol of each substance is introduced into a 1.0 L vessel in the presence of a catalyst and allowed to reach equilibrium at 600 K.

$$P_4S_6(g) + 2 S_2(g) \rightleftharpoons P_4S_{10}(g)$$

If more S_2 is now added to the flask, what will happen?

- a. the reaction shifts from right-to-left, and K_c stays unchanged.
- b. the reaction shifts from right-to-left, and K_c decreases.
- c. the reaction shifts from left-to-right, and K_c decreases.
- d. the reaction shifts from left-to-right, and K_c stays unchanged.
- e. the reaction shifts from left-to-right, and K_c increases.
- 17. Which of the following is an Arrhenius base?

a. NH_3 b. CH_3COOH c. H_3O^+ (aq) d. F^-

e. KOH

18. What is Q_c for the following reaction? 2 CH₄ (g) \Rightarrow C₂H₂ (g) + 3 H₂ (g)

a.
$$Q_{\epsilon} = \frac{[H_2]^3 [C_2 H_2]}{[CH_4]^2}$$
 d. $Q_{\epsilon} = \frac{[C_2 H_2] + [H_2]^3}{[CH_4]^2}$
b. $Q_{\epsilon} = \frac{[C_2 H_2] [H_2]}{[CH_4]}$ e. $Q_{\epsilon} = \frac{[C_2 H_2] [H_2]^3}{[CH_4]}$
c. $Q_{\epsilon} = \frac{3[H_2] [C_2 H_2]}{[CH_4]}$

$$Q_c = \frac{1}{2[CH_4]}$$

- 19. Which of the following is <u>not</u> a conjugate acid/base pair?
 - a. H_2SO_4 / HSO_4^-
 - b. F^{-}/HF
 - c. Cl^{-}/HCN
 - d. HNO_2 / NO_2^-
 - e. HPO_3^- / H_2PO_3
- 20. Some HCl (g) is dissolved in pure water to give a final concentration of 4.0×10^{-12} M. What is the pH of this solution of HCl (aq) to one decimal place?
 - a. 11.4
 - b. 1.4
 - c. 4.0
 - d. 8.2
 - e. 7.0
- 21. Which of the following is <u>not</u> a Bronsted base? NH₃, F⁻, OH⁻, CH₃COO⁻.
 - a. OH
 - b. F
 - c. NH₃
 - d. CH₃COO⁻
 - e. they are all Bronsted bases.
- 22. In the following reaction at 600 K, which has $K_c = 6.2 \times 10^3$ and $\Delta H^o = -254$ kJ, 1.0 mol of each substance is introduced into a 1.0 L vessel in the presence of a catalyst and allowed to reach equilibrium at 600 K.

$$P_4S_6(g) + 2 S_2(g) \rightleftharpoons P_4S_{10}(g)$$

If the temperature is now lowered, what will happen to the equilibrium concentrations?

- a. $[P_4S_6]$ will decrease and $[P_4S_{10}]$ will increase.
- b. the concentrations will stay the same.
- c. $[S_2]$ will increase and $[P_4S_{10}]$ will decrease.
- d. all concentrations will increase.
- e. $[P_4S_6]$ will increase and $[P_4S_{10}]$ will decrease.
- 23. Which of the following is not a strong acid: HI, HNO₃, HBr, HSO₄
 - a. HI
 - b. HBr
 - c. HNO₃
 - d. HSO₄
 - e. they are all strong acids
- 24. Which of the statements is true about the equilibrium below? HCOOH $(aq) + CN^{-}(aq) = HCOO^{-}(aq) + HCN (aq)$
 - a. HCOO⁻ is the stronger base, and $K_c < 1$
 - b. CN^{-} is the stronger base, and $K_c > 1$
 - c. CN^{-} is the weaker base, and $K_c > 1$.
 - d. HCOOH is the stronger acid, and $K_c < 1$.
 - e. HCN is the stronger acid, and $K_c < 1$.
- 25. $K_c = 0.10$ for the reaction below at a particular temperature.

$2 \operatorname{SeO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SeO}_3(g)$

What is K_c for the following reaction at the same temperature?

$$4 \operatorname{SeO}_3(g) \rightleftharpoons 4 \operatorname{SeO}_2(g) + 2 \operatorname{O}_2(g)$$

- a. 3.2 b. 100 c. 0.01
- d. 20
- e. 0.02

- 26. K_c for the reaction Al (s) + Cl₂ (g) \rightleftharpoons AlCl₃ (s) is given by
 - a. $K_c = 1 / [Cl_2]$
 - b. $K_c = [AlCl_3] / [Al][Cl_2]$
 - c. $K_c = [Cl_2]$
 - d. $K_c = 1 / [Al][Cl_2]$
 - e. none of the other answers
- 27. A 2.4 x 10^{-2} M solution of NaOH has a volume of 0.10 L. If 0.20 L of pure water is added, what is the [OH⁻] in the final solution?
 - a. $1.2 \times 10^{-2} \text{ M}$
 - b. $2.4 \times 10^{-2} M$
 - c. $0.8 \times 10^{-2} M$
 - d. $3.6 \times 10^{-2} \text{ M}$
 - e. cannot be determined without K_c
- 28. In the reaction below, the $H_2O(l)$ is acting as a what?
 - NH_3 (g) + H_2O (l) $\rightleftharpoons NH_4^+$ (aq) + OH^- (aq)
 - a. Bronsted acid
 - b. Bronsted base
 - c. both a Bronsted acid and a Bronsted base
 - d. neither a Bronsted acid nor a Bronsted base
 - e. cannot be determined

29. The reaction $H_3O^+(aq) + OH^-(aq) \rightarrow 2 H_2O(l)$ is what kind of reaction?

- a. self-ionization of water
- b. weak acid dissociation
- c. weak base dissociation
- d. neutralization
- e. auto-ionization of water
- 30. Consider the reaction $I_2(g) \rightleftharpoons 2I(g)$ at 500 K. The initial $[I_2] = 0.45$ M and initial [I] = 0. What is [I] at equilibrium? $K_c = 5.6 \times 10^{-12}$ at 500K.
 - a. $2.5 \times 10^{-5} M$
 - b. $6.4 \ge 10^{-6} M$
 - c. $1.6 \ge 10^{-6} M$
 - d. $5.0 \times 10^{-4} M$
 - e. impossible to determine

Version Check

- 31. This question will not be graded. Bubble in your answer as question 31 so that we can check your exam version, if we think something is wrong,
 - a. Version A
 - b. Version B
 - c. Version C

Useful Information

Acid K _a v	values
-----------------------	--------

HIO ₃	$1.6 \ge 10^{-1}$
HClO ₂	$1.12 \ge 10^{-2}$
HNO ₂	7.1 x 10 ⁻⁴
HF	6.8 x 10 ⁻⁴
HCOOH	$1.8 \ge 10^{-4}$
C ₆ H ₅ COOH	6.3 x 10 ⁻⁵
CH ₃ COOH	1.8 x 10 ⁻⁵
CH ₃ CH ₂ COOH	1.3×10^{-5}
HClO	2.9 x 10 ⁻⁸
HBrO	2.3×10^{-9}
HCN	6.2×10^{-10}
HIO	2.3×10^{-11}

$$\begin{split} K_p &= K_c \; (RT)^{\Delta n} \\ R &= 0.082 \; L.atm/mol.K \end{split}$$