SECTION 19.3. Slightly Soluble Ionic Compounds

A very soluble ionic salt (*e.g.*, NaCl) dissolves and completely dissociates into Na⁺ (aq) and Cl⁻ (aq). <u>However</u>, some salts are only slightly soluble, and an equilibrium exists between dissolved and undissolved compound. Consider the addition of $PbSO_4$ (s) to water.

$$PbSO_4(s) = Pb^{2+}(aq) + SO_4^{2-}(aq)$$

If the reaction hasn't reached equilibrium, the reaction quotient Q_c is

$$Q_{c} = \frac{[Pb^{2+}][SO_{4}^{2-}]}{[PbSO_{4}]}$$

The concentration of a solid (= its density) is a constant \therefore combine it with Q_c .

$$Q_{c} [PbSO_{4}] = Q_{sp} = [Pb^{2+}][SO_{4}^{2-}]$$

$$Q_{sp} = \text{``ion-product expression''. At equilibrium, } Q_{sp} = K_{sp}$$

$$K_{sp} = [Pb^{2+}][SO_{4}^{2-}]$$

K_{sp} = "Solubility Product Constant" or just "Solubility Product"

K_{sp}, like other equilibrium constants, only depends on temperature.

For any salt
$$M_pX_q(s) \Rightarrow pM^{n+}(aq) + qX^{z-}(aq)$$

 $K_{sp} = [M^{n+}]^p[X^{z-}]^q$

Examples:

$Cu(OH)_2(s) \Rightarrow Cu^{2+}(aq) + 2 OH^{-}(aq)$	K _{sp} = [Cu ²⁺][OH⁻] ²
$CaCO_{3}(s) = Ca^{2+}(aq) + CO_{3}^{2-}(aq)$	$K_{sp}^{-r} = [Ca^{2+}][CO_3^{2-}]$
$Ca_{3}(PO_{4})_{2}(s) = 3 Ca^{2+}(aq) + 2 PO_{4}^{3-}(aq)$	$K_{sp} = [Ca^{2+}]^3 [PO_4^{3-}]$

<u>Special case of metal sulfides</u>: The S^{2-} (aq) anion, a weak base (but one of the strongest weak bases) is very unstable in water and undergoes (~100%) a basedissociation reaction to give HS⁻ (aq) and OH⁻ (aq).

 $S^{2-}(aq) + H_2O(I) \rightarrow HS^-(aq) + OH^-(aq)$

 \therefore the solubility equilibrium when MnS (s) is dissolved in water is

MnS (s) + $H_2O(I) \Rightarrow Mn^{2+}(aq) + HS^{-}(aq) + OH^{-}(aq)$

 $\therefore K_{sp} = [Mn^{2+}][HS^{-}][OH^{-}]$

** Now, the greater is $K_{\rm sp},$ the more soluble the substance is. **

e.g., $PbSO_4$ $K_{sp} = 1.6 \times 10^{-8}$ insoluble $CoCO_3$ $K_{sp} = 1.0 \times 10^{-10}$ more insoluble (or less soluble) $Fe(OH)_2$ $K_{sp} = 4.1 \times 10^{-15}$ most insoluble (or least soluble) Table 19.2

Table 19.2Solubility-Product Constants (K_{sp}) of Selected IonicCompounds at 25°C

Name, Formula	K _{sp}
Aluminum hydroxide, Al(OH) ₃	3x10 ⁻³⁴
Cobalt(II) carbonate, CoCO ₃	1.0x10 ⁻¹⁰
Iron(II) hydroxide, Fe(OH) ₂	4.1x10 ⁻¹⁵
Lead(II) fluoride, PbF ₂	3.6x10 ⁻⁸
Lead(II) sulfate, PbSO ₄	1.6x10 ⁻⁸
Mercury(I) iodide, Hg ₂ I ₂	4.7x10 ⁻²⁹
Silver sulfide, Ag ₂ S	8x10 ⁻⁴⁸
Zinc iodate, $Zn(IO_3)_2$	3.9x10 ⁻⁶

Table 19.3 Relationship Between K_{sp} and Solubility at 25°C

No. of lons	Formula	Cation/Anion	$K_{\sf sp}$	Solubility (<i>M</i>)
2	MgCO ₃	1/1	3.5x10 ⁻⁸	1.9x10 ⁻⁴
2	$PbSO_4$	1/1	1.6x10 ⁻⁸	1.3x10 ⁻⁴
2	BaCrO ₄	1/1	2.1x10 ⁻¹⁰	1.4x10 ⁻⁵
3	Ca(OH) ₂	1/2	6.5x10 ⁻⁶	1.2x10 ⁻²
3	BaF_2	1/2	1.5x10 ⁻⁶	7.2x10 ⁻³
3	CaF ₂	1/2	3.2x10 ⁻¹¹	2.0x10 ⁻⁴
3	Ag_2CrO_4	2/1	2.6x10 ⁻¹²	8.7x10 ⁻⁵

** The *higher* the K_{sp} value, the *greater* the solubility, as long as we compare compounds that have the *same total number of ions* in their formulas. **

Calculations Involving Solubility Products

Two types: Use K_{sp} to find concs of dissolved ions Use concs to find K_{sp} .

Example: The solubility of Ag_2CO_3 is 0.032 M at 20 °C. What is its K_{sp} ?

A common type of question - note that we are told the molar solubility of Ag_2CO_3 , but of course it will dissociate into ions. Therefore,

Example:The solubility of Zn (oxalate) is 7.9×10^{-3} M at 18 °C. What is its K_{sp} ?
Zn (ox) \Rightarrow Zn²⁺ (aq) + ox²⁻ (aq)[init](solid) -
[change] -7.9×10^{-3} M $+7.9 \times 10^{-3}$ $+7.9 \times 10^{-3}$
[equil](solid)7.9 × 10^{-3} M 7.9×10^{-3} M $K_{sp} = [Zn^{2+}][ox] = (7.9 \times 10^{-3})^2$ $K_{sp} = 6.2 \times 10^{-5}$

Example: What is the molar solubility of $SrCO_3$? ($K_{sp} = 5.4 \times 10^{-10}$) $SrCO_{3}(s) = Sr^{2+}(aq) + CO_{3}^{2-}(aq)$ [init] (solid) 0 change -x +x +x [equil] (solid) x x 0 $K_{sp} = x^2$ \therefore x = \therefore $x = 2.3 \times 10^{-5} M$ \therefore Solubility of SrCO₃ is 2.3 x 10⁻⁵ M **Example:** What is the molar solubility of $Ca(OH)_2$? ($K_{sp} = 6.5 \times 10^{-6}$). $Ca(OH)_{2}(s) = Ca^{2+}(aq) + 2OH^{-}(aq)$ (solid) 0 [init] 0 change -x +x +2x [equil] (solid) x 2x $K_{sp} = 6.5 \times 10^{-6} = x(2x)^2 = 4x^3$ (careful!) \therefore Solubility of Ca(OH)₂ = 1.2 x 10⁻² M To obtain the $\sqrt[X]{}$ of a number, learn to use the $\sqrt[X]{}$ button on your calculator, or take the log, divide by x, then antilog.

The Effect of a Common Ion on Solubility

Addition of a common ion decreases solubility - due to Le Chatelier's principle.

PbCrO₄ (s)
$$\rightleftharpoons$$
 Pb²⁺ (aq) + CrO₄²⁻ (aq)
K_{sp} = [Pb²⁺][CrO₄²⁻] = 2.3 × 10⁻¹³

Consider this $PbCrO_4$ system at equilibrium. If we dissolve some Na_2CrO_4 (s) (very soluble) in the solution, what will happen? [CrO_4^{2-}] will increase, because the Na_2CrO_4 will dissociate to give more CrO_4^{2-} .

$$Na_2CrO_4$$
 (s) _____ 2 Na^+ (aq) + CrO_4^{2-} (aq)

The K_{sp} for PbCrO₄ tells us that [Pb²⁺][CrO₄²⁻] is a constant \therefore if [CrO₄²⁻] increases, [Pb²⁺] must decrease. How can that happen? Some PbCrO₄ (s) precipitates from solution, *i.e.*, the equilibrium shifts to the left.

$$PbCrO_{4}(s) \rightleftharpoons Pb^{2+}(aq) + CrO_{4}^{2-}(aq)$$

$$add CrO_{4}^{2-}$$
Shift

The equilibrium will shift to the left (*i.e.*, more $PbCrO_4$ (s) will form) until $[Pb^{2+}]_{new}[CrO_4^{2-}]_{new} = K_{sp} = 2.3 \times 10^{-13}$.

** i.e. $PbCrO_4$ is less soluble in aqueous Na_2CrO_4 solution than in pure water.

Similarly, addition of a soluble source of Pb^{2+} (*e.g.*, $Pb(NO_3)_2$) to a solution of PbCrO₄ will increase [Pb²⁺] and cause PbCrO₄ (s) to precipitate from solution. Fig 19.12

19-7

Figure 19.12 The effect of a common ion on solubility.

If Na₂CrO₄ solution is added to a saturated solution of PbCrO₄, it provides the *common ion* CrO₄²⁻, causing the equilibrium to shift to the left. Solubility *decreases* and solid PbCrO₄ precipitates.

To understand this, let's make up an example that will use more convenient numbers. Imagine a solid MX with K_{sp} = 100.

$$MX (s) \Rightarrow M^{+} (aq) + X^{-} (aq)$$

at equilibrium, $[M^+] = 10.0 \text{ M}$ $[X^-] = 10.0 \text{ M}$ $\therefore K_{sp} = 10.0 \times 10.0 = 100$

(i.e MX(s) will dissolve until $[M^+]=[X^-] = 10.0M$ because $K_{sp} = [M^+][X^-]=100$)

Now, let's add enough very soluble NaX to make new [X⁻] = 20 M, *i.e.*, we double [X⁻]. now [M⁺][X⁻] = 10.0×20.0 = 200 = $Q_{sp} \neq K_{sp}$.

Reaction no longer at equilibrium \therefore shifts to the left until it returns to equilibrium \therefore more MX (s) forms, decreasing [M⁺] and [X⁻].

When	[M ⁺] = 10M	[X ⁻] = 20M	$Q_{sp} = 200 \neq K_{sp}$
	[M⁺] = 9M	[X ⁻] = 19M	$Q_{sp}^{r} = 171 \neq K_{sp}^{r}$
	[M⁺] = 8M	[X ⁻] = 18M	$Q_{sp}^{r} = 144 \neq K_{sp}^{r}$
	[M⁺] = 7M	[X ⁻] = 17M	$Q_{sp}^{r} = 119 \neq K_{sp}^{r}$
	[M⁺] = 6.5M	[X⁻] = 16.5M	$Q_{sp} = 107 \neq K_{sp}$
	[M⁺] = 6.2M	[X ⁻] = 16.2 M	$Q_{sp} = 100 = K_{sp}$

∴ reaction at equilibrium again with new $[M^+] = 6.2 \text{ M}$, new $[X^-] = 16.2 \text{ M}$ Compare with old $[M^+] = 10.0 \text{ M}$, new $[X^-] = 10.0 \text{ M}$

 $Q_{sp} = [M^+][X^-] = (6.2)(16.2) = 100 = K_{sp}.$

<u>Remember</u>: Le Chatelier's principle tells us that if we perturb a reaction at equilibrium, it will shift in a direction that allows it to reach equilibrium again.

Effect of pH on Solubility

Similar to the previous section, if a compound contains the anion of a weak acid, addition of H_3O^+ (from a strong acid) increases its solubility.

Why? Le Chatelier's principle again.

$$CaCO_3$$
 (s) \rightleftharpoons Ca^{2+} (aq) + CO_3^{2-} (aq)

Addition of H_3O^+ causes the $[CO_3^{2-}]$ to decrease.

$$CO_{3}^{2-}(aq) + H_{3}O^{+}(aq) \rightarrow HCO_{3}^{-}(aq) + H_{2}O$$

$$\therefore CaCO_{3}(s) \rightleftharpoons Ca^{2+}(aq) + CO_{3}^{2-}(aq)$$
if $[CO_{3}^{2-}]$ decreases
Shift
i.e., when we decrease $[CO_{3}^{2-}]$ (by adding $H_{3}O^{+}$), reaction will shift to
the right to make more CO_{3}^{2-} and restore equilibrium.

Figure 19.13 Test for the presence of a carbonate.

When a carbonate mineral is treated with HCl, bubbles of CO_2 form $HCO_3^-(aq) + H_3O^+(aq) \rightarrow H_2CO_3(aq) + H_2O$

 H_2CO_3 (aq) $\rightarrow CO_2$ (g) + H_2O_2 .

Predicting the Formation of a Precipitate: $Q_{sp} = K_{sp}$ Three possibilities:

- (a) If $Q_{sp} = K_{sp}$, reaction at equilibrium, no change.
- (b) If $Q_{sp} > K_{sp}$, reaction not at equilibrium
 - \therefore [] of ions in solution too high
 - : solid (precipitate) forms until $Q_{sp} = K_{sp}$
- (c) If $Q_{sp} < K_{sp}$, reaction not at equilibrium
 - \therefore [] of ions in solution too low
 - \therefore no solid (precipitate) forms, i.e. nothing happens

<u>Example</u>: Will a precipitate form if 0.100 L of 0.30 M $Ca(NO_3)_2$ is mixed with 0.200 L of 0.060 M NaF?

<u>Method</u>: Calculate Q_{sp} and compare with K_{sp} .

First: What is the sparingly soluble salt? NaNO₃, like all Na⁺ and NO₃⁻ salts, is very soluble in water \therefore it must be CaF₂.

$$\therefore \quad CaF_2(s) \Rightarrow Ca^{2+}(aq) + 2 F^{-}(aq)$$
$$K_{sp} = [Ca^{2+}][F^{-}]^2 \quad \therefore \text{ need } [Ca^{2+}] \text{ and } [F^{-}].$$

(a) We start with 0.30 M $Ca(NO_3)_2 = 0.30$ M $[Ca^{2+}]$ (~100% dissociation) (b) We start with 0.060 M NaF = 0.060 M $[F^-]$ (~100% dissociation)

-- but we are mixing two solutions, therefore both will be diluted.

Section 19.4 Solubility Equilibria involving Complex Ions

AgCl (s) is only slightly soluble, and it does NOT become more soluble if we lower the pH (because Cl^- is the conjugate base of a strong acid and therefore does not bind the added H^+)

<u>BUT</u>, AgCl (s) becomes much more soluble if we add NH_3 to the solution. Why? - because the NH_3 reacts with the Ag⁺ (aq) (Lewis acid/Lewis base reaction) to give a complex ion $[Ag(NH_3)_2]^+$. Consider what happens as two steps:

AgCl (s) = Ag^+ (aq) + Cl^- (aq)
$$K_{sp} = 1.8 \times 10^{-10}$$
 (v. small)Ag^+ (aq) + 2 NH_3 (aq) = [Aq(NH_3)_2]^+ $K = K_{form} = 1.6 \times 10^7$

** The equilibrium constant of a reaction which is the formation of a complex ion is called the "formation constant", K_{form} or K_f **

So, the overall reaction that occurs when AgCl is dissolved in water with $\rm NH_3$ also present is

 $AgCl(s) + 2 NH_3(aq) = [Ag(NH_3)_2]^+ + Cl^-(aq) (K_{net})$

The net K_c for this (K_{net}) is the product of the K_{sp} and K_{form} i.e. the K's of the individual two steps.

 \therefore K_{net} = K_{sp} × K_f = (1.8 × 10⁻¹⁰)(1.6 × 10⁷) = 2.9 × 10⁻³

: therefore the solubility of the AgCl (s) is indeed much greater when NH_3 is also present, since $K_{net} \gg K_{sp}$ (by 10 million times !)

Figure 19.15 $Cr(NH_3)_6^{3+}$, a typical complex ion.

A *complex ion* consists of a central metal ion covalently bonded to two or more anions or molecules, called *ligands*.

Table 19.4Formation Constants (K) of Some Complex lons at
25°C

Copyright © The McGraw-Hill Companies, Inc. Pe	rmission required for reproduction or display.
Complex Ion	K _f
$Ag(CN)_2^{-}$	3.0×10^{20}
$Ag(NH_3)_2^+$	1.7×10^{7}
$Ag(S_2O_3)_2^{3-}$	4.7×10^{13}
AlF_6^{3-}	4×10^{19}
$Al(OH)_4^-$	3×10^{33}
$Be(OH)_4^{2-}$	4×10^{18}
$\mathrm{CdI_4^{2-}}$	1×10^{6}
$Co(OH)_4^{2-}$	5×10^{9}
$Cr(OH)_4^-$	8.0×10^{29}
$Cu(NH_3)_4^{2+}$	5.6×10^{11}
$\operatorname{Fe}(\operatorname{CN})_{6}^{4-}$	3×10^{35}
$Fe(CN)_6^{3-}$	4.0×10^{43}
$Hg(CN)_4^{2-}$	9.3×10^{38}
$Ni(NH_3)_6^{2+}$	2.0×10^{8}
$Pb(OH)_3^{-}$	8×10^{13}
$Sn(OH)_3^-$	3×10^{25}
$Zn(CN)_4^{2-}$	4.2×10^{19}
$Zn(NH_{3})_{4}^{2+}$	7.8×10^{8}
$Zn(OH)_4^{2-}$	3×10^{15}

Copyright: George Christou