CHAPTER 18 ACID-BASE EQUILIBRIA

Section 18.1: Acids and Bases in Water

Water (H_2O) - the most important molecule on earth. Even in pure water, there are small amounts of ions from the equilibrium below ("self-ionization of water" or "auto-ionization of water").

 $H_2O(I) \rightleftharpoons H^+(aq) + OH^-(aq)$ More accurately: $H_2O(I) + H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$

> H_3O^+ (aq) = hydronium ion; <u>often abbreviated as H⁺ (aq)</u> OH⁻ (aq) = hydroxide ion $[H_3O^+] = [OH^-]$ in pure water

Definitions of Acids and Bases

1) ACIDS: give $[H_3O^+] > [OH^-]$ in solution (vinegar, lemon juice) 2) BASES: give $[H_3O^+] < [OH^-]$ in solution (bicarb)

Historically, the first definitions of Acids and Bases were the "Arrhenius Definitions".

1) <u>ACID</u> = a substance with H in its formula, and which dissociates in water to give $H_3O^+(aq)$ (= $H^+(aq)$) Generic acid = HA (*e.g.*, HCl, HNO₃, H_2SO_4 , etc.)

2) <u>**BASE</u>** = a substance with OH in its formula, and dissociates to yield OH⁻ Generic base = MOH (*e.g.*, NaOH, Ca(OH)₂, etc.)</u>

Neutralization: the reaction between an acid and a base

 $H^{+}(aq) + OH^{-}(aq) \rightarrow H_2O(I);$

Strengths of Acids and Bases: (i.e., the amount of H⁺ or OH⁻ produced per mole of substance dissolved)

STRONG ACIDS AND BASES DISSOCIATE COMPLETELY (100%) IN WATER - MUST KNOW THEM!!

Strong Acids: HCl, HBr, HI, HClO₄, HNO₃, H₂SO₄ - plus a few rare ones (e.g. H₂SeO₄) Strong Bases: MOH and M(OH)₂, where $M = Li^+$, Na⁺, K⁺, Rb⁺, Cs⁺, Ca²⁺, Sr²⁺, Ba²⁺ <u>** All other acids and bases are "weak" **</u>

Because strong acids and bases dissociate completely (i.e. ~100%), we do not consider them equilibria, (*i.e.*, $K_c >>> 1$) and we write them as a one-directional reaction.

<u>Strong Acid</u>: HA (g or I) + $H_2O(I) \rightarrow H_3O^+(aq) + A^-(aq)$

<u>Strong Base</u>: MOH (s) + $H_2O(I) \rightarrow M^+(aq) + OH^-(aq)$

<u>Weak Acids</u>: dissociate only partially in solution; it is an equilibrium. HA (aq) + H₂O (I) = H₃O⁺ (aq) + A⁻ (aq)

** Amount of dissociation varies depending on the acid **

Figure 18.1A The extent of dissociation for strong acids.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Strong acid: $HA(g \text{ or } l) + H_2O(l) \rightarrow H_3O^+(aq) + A^-(aq)$

There are ~zero HA molecules in solution.

Figure 18.1B The extent of dissociation for weak acids.

Weak acid: $HA(aq) + H_2O(I) \implies H_3O^+(aq) + A^-(aq)$

** Most HA molecules are undissociated **

Figure 18.2Reaction of zinc with a strong acid (*left*) and a
weak acid (*right*).

1 *M* HCI(*aq*)

Zinc reacts rapidly with the strong acid, since $[H_3O^+]$ is much higher.

Acid Dissociation Constant (K_a) = a way to measure "strength" of a weak acid.

$$HA (aq) + H_2O (I) \rightleftharpoons H_3O^+ (aq) + A^- (aq)$$
Equilibrium constant
$$K_c = \frac{[A^- (aq)][H_3O^- (aq)]}{[H_2O (I)][HA (aq)]}$$

$$[H_2O] \gg [HA], \text{ so it changes negligibly when HA dissociates}$$

$$\therefore \text{ we put it with } K_c \text{ and we have}$$

$$K_c [H_2O] = K_a = \frac{[H_3O^-][A^-]}{[HA]} \quad (\text{omitting } (aq) \text{ for convenience})$$

$$[HA], \text{ The bigger is } K_a, \text{ the stronger the acid HA}$$

$$\therefore \text{ the bigger is } K_a, \text{ the greater the % dissociation}$$

Table 18.2		
Acid HA	Name	Ka
HF	hydrofluoric acid	6.8 x 10 ⁻⁴
PhCOOH	benzoic acid	6.3 x 10 ⁻⁵
MeCOOH	acetic acid	1.8 x 10 ⁻⁵
HCN	hydrocyanic acid	6.2 x 10 ⁻¹⁰
PhOH	phenol	1.0 x 10 ⁻¹⁰
он		

Table 18.2K_a Values for some Monoprotic Acids at 25°C

Name (Formula)	Lewis Structure*	Ka	
Chlorous acid (HClO ₂)	H—Ö—ËI=Ö	1.1×10^{-2}	
Nitrous acid (HNO ₂)	H—Ö—N=Ö	7.1×10^{-4}	4
Hydrofluoric acid (HF)	H—Ë:	6.8×10^{-4}	
Formic acid (HCOOH) Acetic acid (CH ₃ COOH)	:O: H—C—Ö.—Н H—C—C—Ö.—Н	1.8×10^{-4} 1.8×10^{-5}	TRENGTH
Propanoic acid (CH ₃ CH ₂ COOH)	н н :0: н—с—с—с—ё—н н н	1.3×10^{-5}	ACID
Hypochlorous acid (HClO)	H—Ö—Ë	2.9×10^{-8}	
Hydrocyanic acid (HCN)	H—C≡N:	6.2×10^{-10}	

* Red type indicates the ionizable proton; all atoms have zero formal charge.

<u>Weak Bases</u>: none are Arrhenius bases, because they do not have OH in formula. Most have a N atom with a lone pair (e.g. :NH₃, R₂HN:, etc) They react with H₂O to give OH⁻ - that's why they are bases! B (ag) + H₂O (I) \rightleftharpoons BH⁺ (ag) + OH⁻ (ag)

Section 18.2. The pH Scale

Remember that even pure water contains H^+ and OH^- ions from self-ionization. $2H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ $K_{c} = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{2}O]^{2}} \qquad \therefore \quad K_{c} [H_{2}O]^{2} = [H_{3}O^{+}] [OH^{-}]$ Putting $K_{w} = K_{c} [H_{2}O]^{2}$ gives $K_{w} = [H_{3}O^{+}] [OH^{-}]$ K_w = ion-product constant for water $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14} \text{ (at 25 °C)}$: in pure water, $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$ The K_w equation tells us that the product $[H_3O^+][OH^-]$ is a constant (= 1.0 x 10⁻¹⁴ at 25 °C) \therefore if [H₃O⁺] increases, [OH⁻] decreases if $[H_3O^+]$ decreases, $[OH^-]$ increases. We can thus define "acidic" and "basic" in terms of $[H_3O^+]$ and $[OH^-]$. $[H_3O^+] > [OH^-]$ acidic solution $[H_3O^+] < [OH^-]$ basic solution $[H_3O^+] = [OH^-]$ neutral solution

Note: If you know
$$[H_3O^+]$$
, easy to calculate $[OH^-]$
 $[OH^-] = \frac{K_w}{[H_3O^+]} = \frac{1.0 \times 10^{-14}}{[H_3O^+]}$ (at 25 °C), and vice-versa

Question: What are $[H_3O^+]$ and $[OH^-]$ in 0.0012 M NaOH soln at 25 °C?

Answer: NaOH is a strong base : 100 % dissociated in water. NaOH (s) + $H_2O(I) \rightarrow Na^+(aq) + OH^-(aq)$ \therefore 0.0012 M NaOH gives 0.0012 M OH⁻ (aq) \therefore [OH⁻] = 0.0012 M Since $K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$ (at 25 °C) \therefore [H₃O⁺] = (1.0 × 10⁻¹⁴) = (1.0 × 10⁻¹⁴) = 8.3 × 10⁻¹² M [OH⁻] (0.0012)

The pH Scale

18-9

- is a more convenient way to describe how acidic or basic a solution is.

In an acidic solution: pH < 7.00 $pH = -log_{10} [H_3O^+]$ In a neutral solution: pH = 7.00In basic solution: pH > 7.00In basic solution: pH > 7.00

Example 1: What is the pH of a $[H_3O^+] = 10^{-3}$ M solution? $pH = -log[H_3O^+] = -log(10^{-3}) = -(-3) = 3$

Note: the number of sig. figs. in the concentration = the number of digits after the decimal point in the logarithm **

Number	ofs	sig	figs	in	the	conc	=	number	of	digits	<u>after</u>	decimal	point	in	the	log
			-		1											

[H₃O⁺]	pH	
10-3	3	<i>e.g.</i> $[H_3O^+] = 5.4 \times 10^{-4} \text{ M}$
1 × 10 ⁻³	3.0	
1.0 x 10 ⁻³	3.00	pri 0.2/

Note: pH is a \log_{10} scale \therefore difference of one pH unit means a factor of 10 difference A solution with pH = 1.0 has <u>ten</u> times higher [H₃O⁺] than a solution with pH = 2.0.

Example 2: What is the pH of pure water at 25 °C? In pure water, $[H_3O^+] = 1.0 \times 10^{-7} \text{ M}$ \therefore pH = $-\log[H_3O^+] = -\log[1.0 \times 10^{-7}] = 7.00$ **Note** $[H_3O^+] = 10^{-pH}$ \therefore to go from pH to $[H_3O^+]$, **change sign**, and antilog

Other uses of the p-scale

(i) <u>The pOH scale</u> pOH = -log₁₀ [OH⁻] (ii) The pK scale pK = -log₁₀ K

Particularly useful for acid dissociation constants (K_a) of weak acids (see Table 18.3)

acid	Κ _α	pΚ _α
HSO4 ⁻	1.02 × 10 ⁻²	1.991
HNO ₂	7.1 × 10 ⁻⁴	3.15
СН₃СООН	1.8 × 10 ⁻⁵	4.74
HBrO	2.3 x 10 ⁻⁹	8.64
Phenol	1.0×10^{-10}	10.00

increasing acid strength, *i.e.,* increasing amount of dissociation, *i.e.,* decreasing pK_a

Figure 18.6 Methods for measuring the pH of an aqueous solution.

pH paper

pH meter

Example. Calculate pH and pOH of a solution with
$$[H_3O^+] = 1.5 \times 10^{-4} \text{ M}$$
.
pH = $-\log[H_3O^+] = -\log(1.5 \times 10^{-4}) = 3.82$
pOH = pK_w - pH = 14.00 - 3.82 = **10.18**

Remember:

Figure 18.5 The relations among $[H_3O^+]$, pH, $[OH^-]$, and pOH.

		[H ₃ O ⁺]	pН	[OH-]	pOH
MORE BASIC	BASIC	1.0 x 10 ⁻¹⁵ 1.0 x 10 ⁻¹⁴ 1.0 x 10 ⁻¹³ 1.0 x 10 ⁻¹² 1.0 x 10 ⁻¹¹ 1.0 x 10 ⁻¹⁰ 1.0 x 10 ⁻⁹	15.00 14.00 13.00 12.00 11.00 10.00 9.00	1.0×10^{1} 1.0×10^{0} 1.0×10^{-1} 1.0×10^{-2} 1.0×10^{-3} 1.0×10^{-4} 1.0×10^{-5}	-1.00 0.00 1.00 2.00 3.00 4.00 5.00
		1.0 x 10 ⁻⁸	8.00	1.0 x 10 ⁻⁶	6.00
	NEUTRAL	1.0 x 10 ⁻⁷	7.00	1.0 x 10 ⁻⁷	7.00
		1.0 x 10 ⁻⁶	6.00	1.0 x 10 ⁻⁸	8.00
		1.0 x 10 ⁻⁵	5.00	1.0 x 10 ⁻⁹	9.00
DIC		1.0 x 10 ⁻⁴	4.00	1.0 x 10 ⁻¹⁰	10.00
ACI		1.0 x 10 ⁻³	3.00	1.0 x 10 ⁻¹¹	11.00
H	ACIDIC	1.0 x 10 ⁻²	2.00	1.0 x 10 ⁻¹²	12.00
NOF		1.0 x 10 ⁻¹	1.00	1.0 x 10 ⁻¹³	13.00
		1.0 x 10 ⁰	0.00	1.0 x 10 ⁻¹⁴	14.00
		1.0 x 10 ¹	-1.00	1.0 x 10 ⁻¹⁵	15.00

Section 18.3 The Brønsted-Lowry Definition

Arrhenius definition of acids and bases doesn't cover all possibilities, *e.g.,* some bases do not contain OH in their formula. **Brønsted-Lowry definition** is much better

<u>Acid</u> = <u>an H⁺ donor</u>. Must contain H⁺ in its formula (all Brønsted-Lowry acids are also Arrhenius acids).

<u>Base = an H⁺ acceptor</u>. Must contain a lone-pair capable of binding an H⁺ (*e.g.*, NH₃, F⁻, OH⁻, etc.). Brønsted-Lowry bases are not Arrhenius bases, but Arrhenius bases contain the Brønsted-Lowry base, OH⁻.

This gives <u>acid/base reactions</u>: something can only act as a Brønsted-Lowry acid if there is a Brønsted-Lowry base to pick up H⁺.

```
** The acid is the H<sup>+</sup> donor; the base is the H<sup>+</sup> acceptor **
```

```
e.g. HCl(g) + H_2O(l) \rightarrow Cl^{-}(aq) + H_3O^{+}(aq)

(acid) (base)

NH_3(g) + H_2O(l) \rightarrow NH_4^{+}(aq) + OH^{-}(aq)

(base) (acid)

HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)

(acid) (base)

NH_4^{+}(aq) + H_2O(l) = NH_3(g) + H_3O^{+}(aq)

(acid) (base)

[Fe(H_2O)_6]^{3+}(aq) + H_2O(l) = [Fe(H_2O)_5(OH)]^{2+}(aq) + H_3O^{+}(aq)

(acid) (base)

Note: H_2O is amphiprotic - it can be a Bronsted acid or base (Fig. 18.7)

18-14
```

Figure 18.7 Dissolving of an acid or base in water as a Brønsted-Lowry acid-base reaction.

H₂O can even be both and acid <u>and</u> a base in the <u>same</u> reaction!

Consider the self-ionization of water

Conjugate Acid/Base Pairs

The B-L definition introduces the idea of conjugate acids and bases. Consider NH_3/NH_4^+ .

 H_2S + NH_3 \rightleftharpoons HS^- + NH₄⁺ (acid) (base) (base) (acid)

Forward rxn: NH_3 is the base/ H_2S is the acid. Reverse rxn: NH_4^+ is the acid/HS⁻ is the base.

 \therefore we say NH₄⁺/NH₃ are a conjugate acid/base pair. Also H₂S/HS⁻.

Conjugate pair

$$H_2S + NH_3 \Rightarrow HS^- + NH_4^+$$

Conjugate pair

** The acid has one extra H⁺ and one unit greater positive charge (or one less negative charge) **

Language:

` NH_4^+ is the conjugate acid of $NH_3^{"}$ " NH_3 is the conjugate base of $NH_4^{+"}$

" HCl is the conjugate acid of Cl-"

" Cl⁻ is the conjugate base of HCl "

" MeCOOH is the conjugate acid of MeCOO-" (acetic acid) (acetate ion)

"MeCOO" is the conjugate base of MeCOOH"

H₂O can even be both and acid <u>and</u> a base in the <u>same</u> reaction!

Consider the self-ionization of water

Strengths of conjugate acid-base pairs.

** The stronger the acid is, the weaker its conjugate base **

When an acid reacts with a base that is farther down the list, the reaction proceeds to the *right* ($K_c > 1$).

Prediction of Direction of Reactions:

Think of the reaction as a competition between the bases for the H^+ - the stronger base will win!!

 \therefore stronger acid/base pair \rightarrow weaker acid/base pair is the direction the reaction will favor

Note: (i) the acid with the bigger K_a (lower pK_a) is the stronger acid. (ii) the stronger is the acid, the weaker is its conjugate base

Section 18.4. Problems Involving Weak Acid Equilibria

Two types: (a) given conc's, find K_a ; (b) given K_a , find conc's.

Method: Write balanced equation and set up reaction table - let x be the unknown conc. Solve. Use quadratic equation if necessary.

Remember: If we are told the pH, we will know $[H^+]$ (i.e. $[H_3O^+]$)

K _a = <u>[H⁻][</u> [HA	$\frac{A^{-}}{A} = \frac{x^2}{(1.0-x)^2}$	x)	Given x Given K _a	(e.g , ca	. from pH) n calculate), can calculate K _a x, and then pH
[Equil]	(1.0-x)		×		×	is <u>very</u> small **
[Change]	-×		+X		+X	water unless [HA]
[Initial]	1.0 M		0		0	self-ionization of
	HA (aq)	\rightleftharpoons	H⁺ (aq)	+	A⁻ (aq)	** Ignore H⁺ from

Example 1: K_a for HNO₂ is 7.1 x 10⁻⁴. What are [H₃O⁺], [NO₂⁻], and [OH⁻] in 0.50 M HNO₂? What is the pH?

Example 2: The pH of a 0.010 M solution of formic acid is 2.92. What are K_a and percent ionization?

$$\begin{array}{rcl} & HCOOH (aq) \rightleftharpoons H^{+} (aq) + HCOO^{-} (aq) \\ [Initial] & 0.010 \text{ M} & 0 & 0 \\ [Change] & -x & +x & +x \\ [Equil] & (0.010-x) & x & x \\ & K_{\alpha} = \frac{x^{2}}{(0.010-x)} & pH = -\log [H^{+}] = -\log (x) = 2.92 & x = 0.00120 \\ & K_{\alpha} = \frac{(0.00120)^{2}}{(0.010-0.00120)} = \frac{(0.00120)^{2}}{0.0088} = 1.636 \times 10^{-4} = \boxed{1.6 \times 10^{-4}} \\ & \text{ionization of an acid} = & \left(\frac{[HA]_{\text{diss}}}{[HA]_{\text{init}}}\right) \times 100\% = \left(\frac{[H^{+}]}{[HA]_{\text{init}}}\right) \times 100\% \quad \text{Note: } [HA]_{\text{diss}} = x = [H^{+}] \\ & = & \frac{0.0012}{0.010} \times 100\% = 12\% \end{array}$$

NOTE: % ionization increases with decreasing $[HA]_{init}$. *General Rule*: If % ionization is > 5%, must solve quadratic equation for x if calculating conc's to 2 sig. figs. If % ionization < 5 %, can assume [HA]-x \approx [HA]. This applies to problems like the first one above, where K_a is given and we have to calculate [x].

Remember: if $[HA]_{init}/K_a > 400$, approximation is valid if $[HA]_{init}/K_a < 400$, use the quadratic equation

