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ABSTRACT: Using a methodology based on noncollinear
coupled-perturbed density functional theory [J. Chem. Phys.
2013, 138, 174115] we calculate the magnetic exchange
coupling parameters in a recently synthesized set of Fe7

III

disklike clusters [Inorg. Chem. 2011, 50, 3849−3851] to
explain the unusually high ground-state spin found in the
experiments. We show that the calculated exchange
interactions for the new series of Fe7

III disks present strikingly
different trends compared to prior Fe7

III disks. These differences
are attributed to variations in the bridging ligands and the
consequent structural changes in the complexes. The impact of these differences on the experimental ground-state spin of these
complexes is rationalized using a simple classical spin model system and the calculated magnetic exchange couplings.

1. INTRODUCTION

Transition metal complexes featuring a large number of
unpaired metal d electrons are of growing interest for
applications such as spintronics1 and magnetic memory
storage.2 One area of interest is the design of novel molecular
magnets featuring high ground-state spins Stot by tuning the
different magnetic interactions through motivated structural
perturbations. Disklike clusters such as Mn7

3,4 and Fe7
5−7 have

attracted attention since they can feature a rich variety of spin
ground-states depending on the particular competition between
different J interactions and spin-frustration effects.8 Recently, a
set of Fe7

III disklike clusters with a six-pointed star topology
were prepared by one of us (GC),9 g iven by
[Fe7O3(OMe)3−(heen)3Cl4.5(MeOH)(H2O)1.5]Cl1.25[FeCl4]1/4
(shown in Scheme 1 as complex 2), and [Fe7O3(OH)3Cl-
(paeo)6](Cl)(ClO4)4 (shown in Scheme 1 as complex 3), that
feature an unusually large experimentally observed ground-state
spin of Stot = 15/2 and 21/2, respectively. Except a recently
reported Stot = 21/2 disk prepared by Kizas et al.,10 typically
Fe7

III disks with antiferromagnetic interactions yield low-spin
ground-states of Stot = 5/2.5−7

To gain insight into the origin of this unusually large spin, in
this work we determine the magnetic interactions that take
place in complexes 2 and 3 using Kohn−Sham density
functional theory (KS-DFT)11 calculations. For comparison,
we also consider a prior studied Fe7

III disklike cluster6

(Fe7O3(O2CR9(mda)3(H2O)3; shown in Scheme 1 as complex
1 with ground-state spin of Stot = 5/2. For clarity, the
Heisenberg−Dirac12,13 spin Hamiltonian convention we will be
employing is given by

∑̂ = − ̂ · ̂
<

H J S S
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The reported magnetic couplings in this work were
calculated using a recently developed methodology based on
noncollinear coupled-perturbed KS-DFT.14 This methodology
defines and computes the J couplings in terms of a Hessian of
the KS energy with respect to local spin-rotation angles from
the collinear high-spin (HS) reference configuration. For the
purpose of making this work self-contained, we briefly remark
on the relevant points of this method. To evaluate the
derivative of the electronic energy with respect to local spin
angles for a pair of metal atoms, we introduce the constraint
condition
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where s1, sj are the local-spins
15 of the 1st and jth metal atoms,

and 1 < j ≤ N (for the Fe7 systems in this work, N = 7). Finding
the stationary points of the Kohn−Sham energy subject to this
constraint condition via Lagrange multipliers yields a modified
single-particle eigenfunction problem which, assuming a
collinear HS reference solution, simplifies to
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In 3 and 4, h ̂ + J ̂ + V̂XC is the standard KS Hamiltonian, λ1j are
the Lagrange multipliers, and σ̂ are Pauli operators. Considering
λ1j to be small and solving the first-order coupled-perturbed
equations for each of the perturbations, we obtain for the Fe7
case a 6 × 6 Hessian matrix λ[ ]ij = d2EKS/(dλ1idλ1j), the

inversion of which gives the constraint Hessian θ[ ]ij = d2EKS/
(dθ1idθ1j). The magnetic couplings parameters may then be
obtained by inspection of the matrix elements of the constraint
Hessian via
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For the complete details, we refer the reader to ref 14.

2. COMPUTATIONAL DETAILS
All calculations reported here were carried out using the
Gaussian Development Version,16 using a hybrid of LDA
(Slater exchange and Vosko, Wilk, Nusair correlation)17 given
by EXC = aEHF

X + (1 − a)ELDA
X + ELDA

C , where a = 0.3. This
choice originates in the poor convergence properties of the
first-order KS equations with noncollinear GGA kernels.14,18,19

Here we note that for the purpose of evaluating magnetic
exchange couplings, any family of functionals (LDA, GGA, M-
GGA) can show reasonable accuracy when admixed with about
30% Hartree−Fock exchange.20−26 The basis-sets employed in
this work are as follows: For transition metals we employ the 6-
311G* basis set, while for the O atoms we employ the 6-31G*
basis set and the 3-21G for all the remaining atoms. It should
be pointed out that magnetic couplings in KS-DFT have a weak
dependence on the choice of basis.27 All calculations are
performed employing pure d and f functions (Gaussian
keyword “5d 7f”), without symmetry constraints (“nosymm”),
and the numerical integration is done with a pruned grid of 99
radial shells and 590 angular points per shell (“grid =
ultrafine”). The convergence criteria employed are as follows:
The zeroth-order calculations are converged to 10−10 Hartrees
variation in the energy, 10−10 RMS variation in the density
matrix, and 10−8 maximum allowed variation in the density
matrix elements, while the first-order calculations are converged
to 10−8 RMS variation in the first-order commutator matrix,
with a maximum allowed variation in the analytic second
derivatives of 1 Hartree/λ2 (typical second derivatives values

are of order 103 Hartrees/λ2 for the systems considered in this
work). The unrelaxed gas-phase geometrical structures of the
complexes were obtained from the crystallographic data
provided in ref 9 and are available as Supporting Information.

3. RESULTS AND DISCUSSION

To rationalize the spin ground-state of these systems, let us first
consider an hexagonal model for the Fe7

III disklike core (shown
at the rightmost side of Scheme 1) where by symmetry there
are two unique nearest-neighbor couplings, given by Joo (the
“outer−outer” coupling) and Jio (the “inner−outer” coupling),
and both are assumed to be antiferromagnetic (Jio < 0 and Joo <
0). It is useful to consider two idealized extremes, where |Jio/Joo|
≪ 1, and alternatively where |Joo/Jio| ≪ 1. In the former case,
the outer−outer interactions will dominate and a classical
model will give alternating antiferromagnetic ordering for the
outer Fe atoms, leaving only the central Fe atom’s spin
uncanceled, yielding Stot = 5/2. In the latter case the inner−
outer interactions will dominate and the outer ring atoms will
be spin-aligned, with the central Fe antialigned to the ring,
yielding Stot = 25/2. In intermediate cases the strength of Jio and
Joo can be comparable and there will be different degrees of
spin-frustration. Although the formally correct way of dealing
with this problem is by finding the eigenstates and eigenvalues
of the quantum spin Hamiltonian, a simple inspection of the
classical ground-state energy in terms of the local magnetic
moment orientations can give some insight into the degree of
frustration for different exchange coupling ratios Jio/Joo. It
should be pointed out that classical spin models have been
successfully employed to describe the magnetic properties of
large Fe7

III frustrated spin systems.28 To inspect the solutions of
the classical spin system, we have minimized the energy as a
function of the spin orientations of the corresponding
hexagonal Fe7

III (Figure 1) classical model for different Jio/Joo
ratios using a simple Monte Carlo technique. In this model,
while all solutions present coplanar spin vectors, the spin-
frustrated solutions are characterized by noncollinear spin
vectors as shown schematically in Figure 2. In Figure 1 we show
the total spin Stot of the lowest-energy solutions as a function of
Jio/Joo. We find that, within this model, frustrated high-spin
solutions occur for |Jio| ≲ 4|Joo| while for |Jio| ≳ 4|Joo| the spin of
the system saturates at the highest value Stot = 25/2, as
expected. High-spin solutions that give Stot = 15/2 (complex 2)
and Stot = 21/2 (complex 3) are expected for ratios Jio/Joo ∼ 2.7
and Jio/Joo ∼ 3.5, respectively.
Now let us consider our DFT results. Beginning with

complex 1, in Figure 3 we show calculated magnetic couplings
(cm−1) for nearest-neighbors metal atoms. For this complex,
three strong antiferromagnetic interactions can be identified
between outer−outer Fe atoms (Fe2−Fe5, Fe3−Fe6, and Fe4−

Scheme 1. Structures of Complexes 1−3 (with H Atoms Removed) and Simplified Hexagon Structure for the Fe7 Core
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Fe7), while another three strong antiferro-interactions are
found between inner−outer Fe atoms (Fe1−Fe5, Fe1−Fe6,
and Fe1−Fe7). The remaining three outer−outer interactions
between peripheral Fe atoms are intermediate in magnitude,
while the last three inner−outer interactions are weak or
negligible. The exchange couplings in complex 1 favor a lowest-
energy solution with alternating antiferromagnetic ordering for
the outer Fe atoms as described in the previous paragraph,
consistent with the experimentally observed Stot = 5/2.

In Figure 4 we show the calculated magnetic couplings
(cm−1) for complexes 2 and 3. In this case, we can broadly
identify two sets of antiferromagnetic interactions: Strong
couplings between the central and outer Fe atoms bridged by
μ3-O

2−, and weak couplings between the outer nearest-
neighbor Fe atoms. The exchange interactions for complexes
2 and 3 are similar to each other but significantly different from
those of 1: In the latter system, it is the outer−outer couplings
that dominates with weak inner−outer couplings, while for 2
and 3 these trends are reversed and inner−outer interactions
dominate.
From the classical model system discussed before and the

calculated J couplings, we can straightforwardly infer that
complex 2 and 3 tend toward the extreme case of |Joo| ≪ |Jio|,
with a corresponding Stot = 25/2, while complex 1 is
qualitatively similar to the case |Jio| ≪ |Joo| with a corresponding
Stot = 5/2. Therefore, the larger value of Jio in complexes 2 and
3 than in complex 1 confirms a higher spin ground-state in 2
and 3 than in 1, in agreement with the experimentally observed
trends. A closer analysis of the calculated Jio and Joo couplings
yields an average Jio to average Joo ratio for complex 2 of 8.5,
while the same ratio for complex 3 is 9.9. According to Figure 1,
these Jio/Joo ratios correspond in both cases to a saturated value
of Stot = 25/2. This indicates that even though our calculated J
couplings can explain the high-spin observed experimentally for
complexes 2 and 3, according to the classical model (Figure 1)
the strong antiferromagnetic interactions might be over-
estimated with respect to the weak interactions. However,
our DFT calculations successfully predict a higher Jio/Joo, ratio
for complex 3 than for complex 2, consistent with the higher
Stot in 3 than in 2. Therefore, besides all the approximations
involved, our calculated couplings correctly predict the ordering
of the ground-state spin of the three complexes.
Why are the exchange coupling interactions in 2 and 3 so

different from those in 1? Couplings in oxo-bridged dinuclear
Fe7

III complexes are known to be dependent on both the Fe−O
bond lengths and, to a lesser but still significant extent, on the
Fe−O−Fe angles, and various empirical and semiempirical
magnetostructural relationships have been formulated to
estimate J values from these parameters.29,30 The main
difference between compounds 1 and 2/3 is the coordination
of the central Fe atom, which is six-coordinate with distorted
octahedral geometry in 1 and four-coordinate with distorted
tetrahedral geometry in 2 and 3. Since metal−ligand bond
distances decrease with decreasing coordination number, if
other factors are equal, it is expected that the Fe−O bond
lengths to the central Fe atom will be significantly shorter in 2
and 3 than in 1. This is indeed the case, with the XRD Fe−O
bond ranges being 1.987(4)−2.023(4) Å (average 2.005 Å),
1.844(4)−1.856(4) Å (average 1.849 Å), and 1.866(3)−
1.885(3) Å (average 1.875 Å) for 1−3, respectively. Decreased
Fe−O bond lengths to the central Fe atom in 2 and 3 will serve
to increase the other Fe−O lengths in the Fe7 core, and the net
effect is expected to be an increase in Jio and a decrease in Joo
relative to 1. The changes in the peripheral ligands bridging the
outer Fe atoms will also have an effect, primarily on Joo. For
example, it is known from studies on a family of Mn7 clusters,
which are structurally similar to the present Fe7 clusters, that
changing the identity of the peripheral ligands can have small
but significant impact on the J values in the magnetic core of
the molecule, altering the ground-state spin from Stot = 11 to
16.29,30 It is also worth pointing out that there is appreciably
good qualitative agreement between the calculated DFT

Figure 1. Ground-state total spin Stot vs Jio/Joo for the classical
Heisenberg model. The dashed lines indicate the location of Jio/Joo for
complexes 2 and (experimental values of S = 15/2 and 21/2,
respectively) according to this model.

Figure 2. Lowest-energy classical spin configuration for complex 2
with Jio/Joo = 3 (see text). Only the core structure is shown with Fe
atoms in yellow and O in red.

Figure 3. Calculated magnetic couplings (cm−1) for complex 1.
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couplings reported herein and those determined for 1−3 from
application of the magnetostructural relationship of Weihe and
Güdel30 as reported by Mukherjee et al.9

4. CONCLUSIONS
A novel methodology, based on linear-response density
functional theory, has been employed to explain the higher
ground-state spin found in two Fe7

III disklike complexes (2 and
3) by evaluating their magnetic exchange coupling parameters.
Our calculations reveal that the magnetic exchange interactions
of the new complexes 2 and 3 are qualitatively different
compared to those of the low-spin complex 1, which leads to
their significantly higher ground-state spins, in agreement with
experimental observations. Our analysis shows that the origin of
the different trends in the couplings is due to the structural
modification of the bridging ligands in the central and
periphery of the disks, which results in the suppression of the
strength of the antiferromagnetic interactions between the
outer Fe atoms and an enhancement of the interactions
between the central and outer Fe atoms.
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