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The ultraviolet-visible absorbance differences spectra of Mn(II,III) and Mn(III,III) oxo-bridged carboxylate 
complexes are reported. The difference spectra are remarkably similar to those of the photosynthetic water- 
oxidation enzyme complex reported by Dekker et al. [(1984) Biochim. Biophys. Acta 764, 301-309] which 
were interpreted as being due exclusively to Mn(II--,IV) transitions. This result indicates that certain S-state 
changes of the enzyme complex may instead involve Mn(II--,III) transitions, and that difference spectra 

alone cannot be used with confidence to assign the Mn oxidation state changes during water oxidation. 

Manganese Photosynthesis Water oxidation Absorbance difference spectrum 

1. INTRODUCTION 

Four atoms of Mn seem to be intimately in- 
volved in the four-electron oxidation of  water to 
dioxygen by the enzyme in the photosynthetic 
apparatus of  green plants [1]. This Mn complex is 
capable of cycling between five distinct oxidation 
levels, labelled S0-$4 in the pioneering work of  
Kok [2]. The UV-visible absorbance changes 
associated with the oxygen-evolution cycle have 
been thoroughly investigated [3-7]. The difference 
spectrum of a redox component of the enzyme (ob- 
tained after correcting for spectral changes due to 
electron acceptors Q and donors Z) has been 
assigned to oxidation state changes of the Mn com- 
plex. While the oscillatory pattern of this spectral 
change has been under debate [3,5-6], the oxi- 
dation state change assignment to an 
Mn(I I I )~Mn(IV)  transition by Dekker et al. seems 
to have been well accepted. In addition, transitions 
S0~$1~$2--*$3~S0 are now believed to involve 
the Mn oxidation pattern + 1 : + 1 : + 1 : - 3  [7] 
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which, together with the difference spectral con- 
clusions, results in Mn oxidation state changes of 
4Mn3+:3  Mn 3+, M n 4 + : 2 M n  3+, 2 M n 4 + : M n  3+, 
3 Mn 4+ :4 Mn 3+. While this is reasonable, it would 
result in the Sz state being EPR-silent, a conclusion 
inconsistent with EPR studies [8]. Since a 
tetranuclear site seems overall to be the more 
favored by the total available data, there is no 
unique pattern of Mn oxidation state changes 
which would rationalize all the apparently con- 
flicting data. Since the results by Dekker et al. 
seem pivotal for specifying the Mn oxidation levels 
of a particular S-state, we decided to review the 
basis for their conclusions. Their .difference spec- 
tra were compared with those of a binuclear Mn 
gluconate complex [9] which can be obtained with 
Mn in the + 2, + 3, and + 4 oxidation states. The 
+ 3 / + 4  difference spectrum was indeed much 
more similar to the enzyme spectrum than the 
+ 2 / +  3 spectrum and this led to their conclusion 
that the S-state changes involve the + 3 / +  4 transi- 
tion. However, we felt that such an important con- 
clusion should not be based on comparisons with 
only a single model system. We do not mean this 
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as a criticism for there truly is a lack of isostruc- 
tural Mn complexes in variable oxidation states 
available for such comparisons. However, our 
own work has recently provided isostructural 
Mn(II,III) and Mn(III, lII)  complexes and we have 
compared their UV-visible difference spectra with 
that of the enzyme. We herein report the result of 
this work. 

2. MATERIALS AND METHODS 

Reaction of NBu~MnO4 with Mn(OAc)2.4H20 
and acetic or benzoic acids in pyridine or 
pyridine/ethanol mixtures yields a series of 
trinuclear complexes [Mn30(OzCR)6(pyr)3-, 
(H20)x] °'+ (x = 0, R = Me; x = t, R = Ph) which 
have been characterized by a variety o f  techniques 
including crystallography in some cases (submit- 
ted). Addition of 2,2'-bipyridine (bipy) to MeCN 
solutions of these trinuclear species yields a new 
class of  tctranuclear Mn complexes [Mn402- 
(O2CR)v(bipy)z] z (Z : 0, R = Ph, MnZ+: 3 Mn3+; 
Z = 1, R = Me, 4 Mn 3~) (submitted). 

UV-visible spectra were recorded on - 5  mM 
MeCN or CHzCIz solutions using a Hewlett 
Packard model 4450A spectrophotometer. 

3. RESULTS 

Our research is seeking the synthesis of an in- 
organic model of  the Mn site in the water- 
oxidation enzyme to assist in elucidating the nature 
and mode of action o f  this unit. Since no por- 
phyrin rings have been detected and all quinones 
associated with the PS II reaction center have been 
accounted for in other functions [10], amino acid 
side group ligation to the Mn in the enzyme is sug- 
gested. Recent EXAFS results indicate bridging 
oxide (or hydroxide) and terminal O and/or  N 
ligands [11], the latter presumably from tyrosine 
phenoxide, aspartic/glutamic acid carboxylate and 
histidine imidazole. 

Our efforts in this area have led us to high yield 
syntheses of isostructural [Mn30(OzCMe)6(pyr)3]- 
(pyr) and [MnaO(OzCMe)6(pyr)3](C104) possessing 
Mn(II,III,III) and Mn(III , l l I , I I l )  oxidation levels, 
respectively. Since these also contain oxide bridges 
and biologically relevant ligands (the pyridine is a 

conservative replacement for imidazole), we de- 
cided their difference spectrum might allow infor; 
mative comparisons with the previous w o r k  b y  
Dekker. The difference spectrum in the r a n g e  
270-400 nm is shown in fig. 1 where we have als0 
reproduced the difference spectrum of  the enzyme 
from fig. 10 of  [4]. As can be seen, the general pro:  
files are very similar in the two plots; a maximum 
at 303 nm in the model spectrum is very close t o  
that of  the native Mn center, -305 rim. Indeed, the 
difference spectrum of  the former is closer to that 
of the latter than found when the Mn(III)/Mn(IV) 
gluconate system is used for comparison. 

An additional comparison can be made if the  
difference spectrum of  [Mi~Oz(O2CMe)7(bipy)2] + 
and [Mn402(OzCPh)7(bipy)2] is employed. The X- 
ray structure of the former has been obtained and 
shown to contain the bridged unit shown below: 

Mn 
/ 

M n-Ox, \O--Mn 
/ 

Mn 

The two complexes contain different carboxylates, 
i.e. Me vs Ph,  but this is unlikely to have a m a j o r  
effect on the difference spectrum. With this pro- 
viso specified, we offer for inspection in fig.2 the 
corresponding difference spectrum. Again, the 
general appearance of  the spectrum is similar to 
that of the enzyme and has a maximum at 
~308 nm. 
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Fig. 1. Difference absorbance spectra for 
[Mn30(O2CMe)6(pyr)3] °'+ and the enzyme site, labelled 

Mn3 and PS II, respectively. 
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Fig.2. Difference absorbance spectrum for 
[Mn402(O2CR)v(bipy)2] z (Z = 0, R = Ph; Z = 1, R = 

Me). 

$I(4 Mn~+), $2(3 Mn 3+, Mn4+), $3(2 Mn 3+, 
2 Mn4+), with the latter on further oxidation 
rapidly reverting to So via $4 with evolution of 02. 
Such a scheme would also imply that 
MnnO2(O2CPh)v(bipy)2 and [Mn402(O2CMe)7- 
(bipy)2] + represent potential models of  the So and 
S~ states, respectively. 
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