Polyhedron 28 (2009) 1880-1882

Contents lists available at ScienceDirect

Polyhedron

journal homepage: www.elsevier.com/locate/poly

Old ligands with new coordination chemistry: A Mn₁₇Na cluster bearing triethanolamine and azide groups and exhibiting slow magnetization relaxation

Theocharis C. Stamatatos, Khalil A. Abboud, George Christou*

Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA

ARTICLE INFO

Article history: Available online 8 December 2008

Keywords: Azides Triethanolamine Heptadecanuclearity Magnetic properties Manganese Slow magnetization relaxation

ABSTRACT

The combination of azide, carboxylate and triethanolamine ligands in higher oxidation state Mn cluster chemistry has yielded a new heptadecanuclear, mixed-valence (II, III, IV) compound with fairly large *S* and *D* values, and frequency-dependent out-of-phase (χ_M'') signals, characteristics of the superparamagnetic-like slow relaxation of an SMM.

© 2008 Elsevier Ltd. All rights reserved.

Single-molecule magnets (SMMs) are individual molecules that function as single-domain nanoscale magnetic particles [1]. A SMM derives its properties from a combination of a large ground-state spin (S) value and an easy-axis type of magnetoanisotropy (negative zero-field splitting parameter, D), which results in a significant energy barrier to reversal of the magnetization vector, experimentally observed by the appearance of frequency-dependent out-ofphase (χ''_{M}) AC signals and magnetization hysteresis. Such species also straddle the classical/quantum interface by displaying not just classical magnetization hysteresis but also quantum tunnelling of magnetization (QTM) [2] and quantum phase interference [3]. Thus, SMMs represent a molecular ('bottom-up') route to nanoscale magnetism [4], with potential technological applications in information storage and spintronics at the molecular level [5a], and use as quantum bits (qubits) in quantum computation [5b]. The upper limit to the barrier (U) is given by $S^2|D|$ or $(S^2 - 1/4)|D|$ for integer and half-integer S, respectively; in practice, QTM through upper regions of the barrier makes the true or effective barrier (U_{eff}) less than U.

Although complexes displaying SMM behavior are known for several metals, manganese cluster chemistry has been the most fruitful source to date giving a wide range of Mn_x nuclearities, with x taking values up to 84, the latter being still the largest known SMM [6]. For these reasons, and more, we are developing new synthetic methods to Mn clusters of various nuclearities and structural types. In particular, we have recently started a program aiming at the investigation of the coordination affinity of N_3^- ion in higher oxidation state Mn cluster chemistry and in reactions with several

families of versatile chelates, such as pyridyl or non-pyridyl alcohols or poly-alcohols and pyridyl oximes [7]. From a magnetic viewpoint, the N_3^- ion bridging in the 1,1-fashion (end-on) is one of the strongest ferromagnetic mediators in molecular magnetism for a wide range of M–N–M angles, while triethanolamine (teaH₃) chelate, for instance, exhibits a large coordinating multifunctionality with metal centers; thus, their amalgamation provided an attractive route to new high-nuclearity/high-spin Mn clusters and SMMs [7].

The reaction of $Mn(ClO_4)_2 \cdot 6H_2O$, NaO_2CCMe_3 , $teaH_3$, NEt_3 , and NaN_3 in a 1:2:1:1:2 molar ratio in MeCN/DMF (2:1, v/v) gave a dark brown solution from which were subsequently isolated dark brown crystals of $[Mn_{17}NaO_{10}(OH)_2(N_3)_3(O_2CCMe_3)_{13}(tea)_3(teaH)-(DMF)]$ (1) in 45% yield.¹

The structure of **1** $(Mn_{12}^{II}Mn_{12}^{II}Mn^{IV})^2$ consists of a $Mn_{17}Na$ cage-like cluster (Fig. 1) with an irregular structural conformation. The $[Mn_{17}Na(\mu_4-O)_8(\mu_3-O)_2(\mu_3-OH)(\mu-OH)_2(\mu_3-N_3)]^{25+}$ core comprises seven $[Mn_4(\mu_4-O^2-)]$ and a $[Mn_3Na(\mu_4-O^2-)]$ tetrahedra fused together and linked to two adjacent $[Mn_3(\mu_3-O^2-)]$ and a $[Mn_2Na(\mu_3-OH^-)]$ triangles by sharing common Mn vertices. Alternatively, the core of **1** could be described as a central $[Mn_3Na(\mu_4-O^2-)]$ tetrahedron fused to two $[Mn_4(\mu_3-O^2-)_4]$ and

^{*} Corresponding author. Tel.: +1 352 392 6737; fax: +1 352 392 8757. *E-mail address:* christou@chem.ufl.edu (G. Christou).

^{0277-5387/\$ -} see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.poly.2008.10.032

 $^{^1}$ Elemental Anal. Calc. for $C_{92}H_{175}Mn_{17}NaN_{14}O_{51}$ (1): C, 34.00; H, 5.43; N, 6.03. Found: C, 34.22; H, 5.46; N, 6.04%. Selected IR data (KBr): 3446mb, 2962m, 2869w, 2071s, 1653m, 1560vs, 1482m, 1411vs, 1362m, 1223m, 1075m, 906m, 787w, 693m, 660mb, 599m, 556w, 444w $\rm cm^{-1}.$

² Crystal structure data for **1** · 5MeCN: $C_{102}H_{188}Mn_{17}NaN_{19}O_{51}$, $M_r = 3453.68$, orthorhombic, space group $P2_12_12_1$, a = 17.463(3) Å, b = 18.144(3) Å, c = 46.054(7) Å, V = 46.054(7) Å³, Z = 4, $\rho_{calcd} = 1.572$ g cm⁻³, T = 173(2) K, 55542 reflections collected, 19027 unique ($R_{int} = 0.1192$), $R_1 = 0.0972$ and $wR_2 = 0.2053$, using 11831 reflections with $I > 2\sigma(I)$.

Fig. 1. Molecular structure of complex **1**. H atoms have been omitted for clarity. Color scheme: Mn^{II} purple; Mn^{III} blue; Mn^{IV} olive; Na yellow; O red; N green; C grey. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

 $[Mn_4(\mu_3-O^{2-})_3(\mu_3-N_3)]$ cubane subunits at common atoms Mn2 and Mn9, respectively. All μ_3 -O²⁻ ions in each cubane subunits convert to a μ_4 mode and bridge seven adjacent Mn atoms, three of which (Mn2,5,7) are fused to the corresponding triangular subunits. The three tea³⁻ groups are bound to up to six Mn atoms, acting as η^{3} : η^{1} : η^{2} : η^{3} : μ_{6} , η^{2} : η^{1} : η^{3} : η^{2} : μ_{5} and η^{2} : η^{1} : η^{2} : η^{2} : μ_{3} ligands, the μ_6 mode being seen for a first time in the coordination chemistry of this group, while the only teaH²⁻ group is bridging under the η^2 : η^1 : η^2 : μ_3 mode. Peripheral ligation about the core is provided by ten η^1 : η^1 : μ , two η^1 : η^2 : μ and an η^2 : η^2 : μ_4 Me₃CCO₂⁻ groups, as well as two terminal N₃⁻ ions and a terminal DMF molecule. All Mn and Na atoms are near-octahedral, except five-coordinate Mn5 and seven-coordinate Mn12, which are square pyramidal ($\tau = 0.01$ [8]) and distorted pentagonal bipyramidal, respectively. The Mn^{II}/ Mn^{III}/Mn^{IV}/Na^I oxidation states were established from the metric parameters, BVS calculations³ [9], and the presence of Jahn-Teller (JT) distortions at octahedral Mn^{3+} . The protonation level of O^{2-} , OH⁻, and OR⁻ groups was also confirmed by BVS calculations [9]. There are no significant intermolecular interactions of any kind, only strong intramolecular H-bonds between bridging OH⁻ and DMF and $Me_3CCO_2^-$ groups, respectively.

While the number of polynuclear complexes of 3d metals at intermediate oxidation states continues to grow rapidly, some nuclearities remain rare. Heptadecanuclear 3d metal complexes are particularly rare [10]; **1** is only the second Mn_{17} cluster ever reported [10a], and the first with such a closed-like structural topology.

Solid-state DC (direct current) magnetic susceptibility (χ_M) data for complex **1** were collected in the temperature range 5.0–300 K in an applied field of 1 kG (0.1 T). The data are plotted as $\chi_M T$ versus *T* in Fig. 2, and clearly indicate a relatively large ground-state spin (*S*) value. $\chi_M T$ for **1** steadily decreases from 44.74 cm³ K mol⁻¹ at 300 K to reach a plateau of ~35.50 cm³ K mol⁻¹ at 20–40 K, before further dropping to 33.49 cm³ K mol⁻¹ at 5.0 K; the latter decrease at the lowest temperatures is assigned to Zeeman effects, zero-field splitting and/or weak intermolecular interactions. The overall shape of the $\chi_M T$ versus *T* curve and the existence of the

Fig. 2. $\chi_M T$ vs. T plot for **1** in a 1 kG field.

20–40 K plateau region are indicative of predominant antiferromagnetic exchange interactions within **1** and a well-isolated ground state *S*, respectively. The 20–40 K value is consistent with an *S* = 17/2 ground state and a g value slightly less than 2.0, as expected for a Mn^{II,III,IV} complex; the spin-only (g = 2) value for an S = 17/2 state is 40.38 cm³ K mol⁻¹.

In order to confirm the ground state of **1**, magnetization (*M*) data were collected in the 0.1–1.0 T and 1.8–10.0 K ranges, and these are plotted as $M/N\mu_{\rm B}$ versus H/T in Fig. 3. We used only low field data (\leq 1.0 T) to preclude problems from low-lying excited states, which are expected for high-nuclearity clusters with a high density of spin states and/or when Mn^{II} ions are present, which give weak exchange interactions. The data were fit by matrix-diagonalization to a model that assumes only the ground state is populated, includes axial zero-field splitting $(D\hat{S}_z^2)$ and the Zeeman interaction, and carries out a full powder average. The best fit (solid lines in Fig. 3) gave S = 17/2, g = 1.85 and D = -0.22 cm⁻¹; alternative fits with S = 15/2 or 19/2 were rejected because they gave unreasonable values of g and D. We conclude that **1** has ground state of S = 17/2, respectively. This was further confirmed by AC (alternating current) susceptibility experiments.

As we have described before on multiple occasions [11], AC susceptibility studies in the 1.8–15 K range with a 3.5 G AC field oscil-

Fig. 3. Magnetization (*M*) vs. field (*H*) and temperature (*T*) data, plotted as reduced magnetization ($M/N\mu_B$) vs. *H/T*, for complex **1** at applied fields of 0.7–1.0 T and in the 1.8–10 K temperature range. The solid lines are the fit of the data; see the text for the fit parameters.

 $^{^3}$ Bond-valence sum (BVS) calculations for the Mn ions of 1 gave values of 1.77–1.94 for Mn^{2^+} ions, 2.77–3.06 for Mn^{3^+} ions, 4.03 for Mn^{4^+} ion and 1.20 for Na^+ ion. BVS calculations for selected oxygen atoms in 1 gave values of 1.72–2.07 for O^{2^-} , 0.90–1.01 for OH⁻, 1.75–1.93 for RO⁻, and 1.05–1.23 for ROH.

Fig. 4. Plots of the in-phase (χ'_M) as $\chi'_M T$ (top), and out-of-phase (χ''_M) (bottom) AC magnetic susceptibilities vs. T in a 3.5 G field oscillating at the indicated frequencies for complex 1.

lating at 5–1000 Hz are a powerful complement to DC studies for determining the ground state of a system, because they preclude any complications arising from the presence of a DC field and/or low-lying excited states. For **1**, the in-phase (χ'_{M}) AC signal, shown as $\chi'_{M}T$ in Fig. 4 (top), is only slightly decreasing with decreasing temperature in the 8-15 K region; extrapolation of the data above 8 K (to avoid the effects of intermolecular interactions at lower temperatures) down to 0 K gives \sim 36.5 cm³ K mol⁻¹, indicating an S = 17/2 ground state with $g \sim 1.95$, in good agreement with the DC magnetization fits.

The S = 17/2 ground state and the negative *D* value suggested that **1** might be SMM. The upper limit to the barrier is $U = (S^2-1)$ (U_{eff}) = 15.70 cm⁻¹ = 22.59 K, but the true, effective barrier (U_{eff}) will be significantly less due to QTM. At temperatures <3.0 K, frequency-dependent tails of out-of-phase (χ''_M) AC susceptibility signals for 1 were observed (Fig. 4, bottom) whose maxima lie below the operating minimum temperature of our SQUID instrument. Such signals are an indication of the superparamagnetic-like slow relaxation of an SMM. To confirm whether 1 is a SMM and shows hysteresis loops, the diagnostic property of a magnet, single-crystal magnetic studies are required to be performed at low enough temperatures using the micro-SQUID apparatus [12]. Such studies are currently in progress and the corresponding results will be reported in due course.

In summary, the combination of azide, carboxylate and teaH₃ ligands in Mn cluster chemistry has yielded an unprecedented heptadecanuclear, mixed-valence (II, III, IV) cage-like molecule with a fairly large S = 17/2 ground state and an appreciably large and negative *D* value. As a result, out-of-phase (χ_M') AC tails of signals have been observed, indicative of the superparamagnetic-like slow relaxation of an SMM. Finally, the combined structural and magnetic results reported herein continue to emphasize how extensive is the ability of Mn chemistry to satisfy a variety of different tastes.

Acknowledgement

The authors thank the U.S. National Science Foundation (Grant CHE-0414555).

Appendix A. Supplementary data

CCDC 700136 contains the supplementary crystallographic data for **1** · 5MeCN. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/ j.poly.2008.10.032.

References

- [1] (a) For reviews, see: G. Christou, D. Gatteschi, D.N. Hendrickson, R. Sessoli, MRS Bull. 25 (2000) 66:
 - (b) G. Aromi, E.K. Brechin, Struct. Bond. 122 (2006) 1;
 - (c) R. Bircher, G. Chaboussant, C. Dobe, H.U. Güdel, S.T. Oshsenbein, A. Sieber, O. Waldmann, Adv. Funct, Mater, 16 (2006) 209:
 - (d) D. Gatteschi, R. Sessoli, Angew. Chem., Int. Ed. 42 (2003) 268.
- [2] J.R. Friedman, M.P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett. 76 (1996) 3830.
- [3] (a) W. Wernsdorfer, R. Sessoli, Science 284 (1999) 133;
- (b) W. Wernsdorfer, M. Soler, G. Christou, D.N. Hendrickson, J. Appl. Phys. 91 (2002) 7164.
- G. Christou, Polyhedron 24 (2005) 2065.
- [5] (a) L. Bogani, W. Wernsdorfer, Nat. Mater. 7 (2008) 179;
- (b) M.N. Leuenberger, D. Loss, Nature 410 (2001) 789.
- [6] A.J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K.A. Abboud, G. Christou, Angew. Chem., Int. Ed. 43 (2004) 2117.
- [7] For a mini-review of azide groups in higher oxidation state manganese cluster chemistry, see: Th.C. Stamatatos, G. Christou, Inorg. Chem., in press and references cited therein.
- A.W. Addison, T.N. Rao, J. Reedijk, J. Rijn, G.C. Verschoor, J. Chem. Soc., Dalton Trans. (1984) 1349.
- (a) W. Liu, H.H. Thorp, Inorg. Chem. 32 (1993) 4102; [9]
- (b) I.D. Brown, D. Altermatt, Acta Crystallogr., Sect. B (1985) 244.
- [10] (a) E.E. Moushi, Th.C. Stamatatos, W. Wernsdorfer, V. Nastopoulos, G. Christou, A.J. Tasiopoulos, Inorg. Chem., in press;
 - (b) G.W. Powell, H.N. Lancashire, E.K. Brechin, D. Collison, S.L. Heath, T. Mallah,
 - W. Wernsdorfer, Angew. Chem., Int. Ed. 43 (2004) 5772;
 - (c) W. Micklitz, V. McKee, R.L. Rardin, L.E. Pence, G.C. Papaefthymiou, S.G. Bott, S.J. Lippard, J. Am. Chem. Soc. 116 (1994) 8061;

 - (d) S. Parsons, G.A. Solan, R.E.P. Winpenny, Chem. Commun. (1995) 1987; (e) Y. Hayashi, K. Fukuyama, T. Takatera, A. Uehara, Chem. Lett. (2000) 770;
 - (f) N. Steunou, G. Kickelbick, K. Boubekeur, C. Sanchez, J. Chem. Soc., Dalton Trans. (1999) 3653.
- [11] (a) For example, see: Th.C. Stamatatos, K.A. Abboud, W. Wernsdorfer, G. Christou, Angew. Chem., Int. Ed. 45 (2006) 4134; (b) R.T.W. Scott, C.J. Milios, A. Vinslava, D. Lifford, S. Parsons, W. Wernsdorfer, G. Christou, E.K. Brechin, Dalton Trans. (2006) 3161;
 - (c) E. Moushi, C. Lampropoulos, W. Wernsdorfer, V. Nastopoulos, G. Christou, A.J. Tasiopoulos, Inorg. Chem. 46 (2007) 3795;
 - (d) M. Soler, W. Wernsdorfer, K. Folting, M. Pink, G. Christou, J. Am. Chem. Soc. 126 (2004) 2156
- [12] W. Wernsdorfer, Adv. Chem. Phys. 118 (2001) 99.