The largest single-strand molecular wheel: Ga_{20} from a targeted, diolate-induced size modification of the Ga_{10} 'gallic wheel'[†]

Theocharis C. Stamatatos, Shreya Mukherjee, Khalil A. Abboud and George Christou*

Received (in Berkeley, CA, USA) 24th July 2008, Accepted 9th October 2008 First published as an Advance Article on the web 17th November 2008 DOI: 10.1039/b812721b

A Ga_{20} single-strand wheel has been prepared by a targeted, propane-1,3-diolate-induced size modification of the known Ga_{10} 'gallic wheel'; the Ga_{20} reverts back to Ga_{10} on treatment with an excess of MeOH.

Polynuclear metal complexes with a single-strand wheel structure continue to attract a lot of interest from many groups. The prototypes were $[Cr_8F_8(O_2CBu^{1})_{16}]^1$ and $[Fe_{10}(OMe)_{20}(O_2CCH_2Cl)_{10}]^2$ the latter dubbed the 'ferric wheel'. Many other single-strand wheels are also now known, for Fe³ as well as other metals such as Co,⁴ Cr,⁵ Cu,⁶ Dy,⁷ Mn,⁸ Ni,⁹ and V.¹⁰ More recently, we reported the Ga analogue of the 'ferric wheel', *i.e.*, $[Ga_{10}(OMe)_{20}(O_2CMe)_{10}]$ (1), which we called the 'gallic wheel',³ the analogous wheel with a different carboxylate was reported by Zafiropoulos and co-workers.¹¹ Single-strand molecular wheels almost always contain an even number of metal ions, and with very few exceptions possess metal nuclearities of 12 or less; these exceptions include Mn₁₆,^{8b} and three M₁₈ (M = Fe, Ga) wheels.^{3,12} Multiple-strand wheels are also known, such as Mn₂₄¹³ and the giant torus-shaped complexes Mn₈₄,¹⁴ Mo₁₅₄,¹⁴ and Mo₁₇₆.¹⁵

Wheel complexes are of interest for a number of reasons. For paramagnetic 3d metal atoms, even-membered antiferromagnetic wheels represent model systems for one-dimensional antiferromagnetism, magnetic anisotropy, and quantum effects such as coherent tunnelling of the Néel vector.¹⁶ However, there are also many wheels with large *S* values, such as Ni₁₂,^{9c} Mn₁₂,^{8c} Mn₁₆,^{8b} and Mn₈₄¹⁴ that in addition are single-molecule magnets (SMMs).

Our recent interest in this area has been targeted at developing new synthetic routes to large M_x (x > 12) wheels, particularly methods that might also allow some level of control of the metal nuclearity (*i.e.* the wheel size). Our main interest, apart from the inherent synthetic challenge, is to achieve a range of wheel sizes to allow a study of progressive changes to their properties as they approach the 1-D limit, *i.e.*, a chain. This requires expanding the wheel size, and effectively rules out using a template approach,^{5c,17} which is much less feasible for larger wheels since it requires a correspondingly larger template. Instead we have been exploring the substitution of diolates for two adjacent MeO⁻ groups of the M₁₀ wheels. Since the MeO⁻ groups in the latter lie above and

Fax: +1-352-392-6737; Tel: +1-352-392-8314

below the central cavity, their substitution by diolates such as propane-1,3-diolate (pd^{2-}) would likely affect the wheel curvature and yield a bigger wheel. A smaller one is unlikely, given the steric congestion that would result in the central hole. A previous use of pdH₂ in Ga chemistry had provided the wheel compound $[Ga_{18}(O_2CR)_6(pd)_{12}(pdH)_{12}(NO_3)_6](NO_3)_6$ (3)³ but the presence of both pd²⁻ and pdH⁻, as well as the additional presence of coordinated NO₃⁻ ligands, complicated matters by making unclear the exact effect of the pd²⁻. This initial study thus could not answer the important question at hand, namely what happens to the Ga₁₀ wheel size if pairs of MeO⁻ ligands are replaced by pd²⁻ groups? We have now answered this question, and in doing so have discovered a complex with a record size for a single-strand wheel.

Complex 1 was slowly dissolved with stirring in pdH_2 MeCN (1: 7, v/v) to give a colourless solution, and this was filtered and layered with Et₂O/Me₂CO (1 : 1, v/v). Colourless crystals of $[Ga_{20}(pd)_{20}(O_2CMe)_{20}]$ ·25MeCN (2·25MeCN) grew slowly over several days and were isolated by filtration; the yield was 20%.⁺ Complex 2 was also obtained, and in higher yields of $\sim 40\%$, from the reaction of GaCl₃ with 3 equivs of NaO₂CMe·3H₂O in pdH₂/MeCN (1 : 7, v/v), followed by filtration and layering of the clear solution with $Et_2O/Me_2CO(1:1, v/v)$. The structure[‡] of **2** (Fig. 1) comprises twenty Ga^{III} ions linked through MeCO₂⁻ and pd²⁻ bridges to form a puckered, single-strand wheel of virtual D_5 point group symmetry. It can be conveniently described as a pentagon of {Ga₄(O₂CMe)₄(pd)₄} units (Ga20-Ga1-Ga2-Ga3, Ga3-Ga4-Ga5-Ga6, etc.) linked at each end by the O atoms of an acetate and two pd²⁻ groups (Fig. 1, bottom). The resulting complex can also be described as constructed of five linear {Ga₃(η^1 : η^1 : μ -O₂CMe)₂(η^2 : η^2 : μ_3 -pd)₂} 'edge' units $(Ga-Ga-Ga = 177.25-179.42^{\circ})$ held together by five $\{Ga(\eta^{1}:\eta^{1}:\mu-O_2CMe)_2(\eta^{2}:\eta^{2}:\mu_3-pd)_2\}$ 'hinge' units (Fig. 2, top); note that every Ga₂ pair in the molecule is thus bridged by two pd^{2-} O atoms and an MeCO₂⁻ group. As in 1, the Ga atoms are six-coordinate and near-octahedral; unlike 1, however, the Ga₂₀ wheel 2 is not planar. The Ga–Ga distances and Ga-O(pd)-Ga angles lie in the 2.902-2.950 Å and 94.78–101.25° ranges, respectively.

A space-filling representation (Fig. 2, bottom) shows that **2** has a diameter of 25.5 Å, with a central hole of 10.0 Å diameter; the corresponding values for **1** are 16.7 Å and 8.1 Å, respectively. In both complexes, there is no residual electron density in the central hole, and the wheels stack to form nanotubular channels.

Consideration of the formulas of **1** and **2** shows that they both belong to a family of 'gallic wheels' of general formula $[Ga_n(OR)_{2n}(O_2CMe)_n]$, which is not the case for

Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7200, USA. E-mail: christou@chem.ufl.edu;

[†] CCDC 692717. For crystallographic data in CIF or other electronic format see DOI: 10.1039/b812721b

Fig. 1 The structure of the Ga_{20} wheel **2**: (top) the complete molecule with Ga atom labels; (bottom) the repeating { $Ga_4(O_2CMe)_4(pd)_4$ } unit (Ga20–Ga1–Ga2–Ga3) and the means of attachment to Ga4 of an adjacent unit. Hydrogen atoms have been omitted for clarity. Colour code: Ga purple, O red, C grey.

3: for 1, n = 10 and RO⁻ = MeO⁻; for 2, n = 20 and $(OR)_2 = pd^{2-}$. As for 2, every Ga₂ pair in 1 is bridged by two alkoxide O atoms and one MeCO₂⁻ group. Thus, the complexes differ only in the identity of the alkoxide, and the resulting *n* value, and we can therefore answer the question posed: the replacement of two adjacent MeO⁻ groups of the Ga₁₀ wheel 1 with the diolate pd²⁻ has caused a doubling of the wheel size to give the Ga₂₀ wheel 2. No doubt several factors contribute to this, including diolate bite and torsion angle restrictions, steric repulsion that would result between the pd²⁻ –CH₂CH₂CH₂- backbones in the central cavity for smaller wheels, and others; all these require careful analysis and modelling.

The conversion of 1 to 2 by treatment with pdH_2 can be reversed by dissolution of 2 in MeOH, which leads to an alcohol substitution reaction and the isolation in 75% yield of colourless complex 1; the latter was confirmed by X-ray crystallography. The bi-directional interconversion between 1 and 2 is summarized in eqn (1).

$$2[Ga_{10}(OMe)_{20}(O_2CMe)_{10}] (1) + 20 \text{ pdH}_2 \rightarrow [Ga_{20}(\text{pd})_{20}(O_2CMe)_{20}] (2) + 40 \text{ MeOH}$$
(1)

Fig. 2 The five-fold symmetric Ga_{20} structure: (top) the linkage of Ga_3 'edge' units by Ga 'hinge' atoms. Black thick lines indicate the Ga–Ga vectors; (bottom) a space-filling representation. Colour code: Ga purple, O red, C grey, H white.

To probe solution species and conversions further, an ¹H NMR spectroscopic investigation was carried out. The NMR spectrum of 1 in CDCl₃ exhibited the three resonances expected for an intact Ga_{10} wheel retaining the D_{5d} symmetry of the solid state: the signals are at 2.13 (singlet, 3H), 3.36 (singlet, 3H), and 3.51 ppm (singlet, 3H), corresponding to one acetate and two symmetry-inequivalent methoxide sets of ligands, respectively. The ¹H NMR of **2** in CDCl₃ shows two resonances at 1.95 (singlet, 3H) and 2.12 ppm (singlet, 3H) assignable to the two symmetry-inequivalent sets of acetates under D_5 symmetry, but is otherwise very complicated as expected for the many inequivalent pd²⁻ CH₂ groups, and diastereotopic H nuclei of CH2 pairs at the 1 and 3 positions of pd^{2-} . The preliminary conclusion is that 2 also retains its solid-state structure in CDCl₃. Dissolution of 2 in CD₃OD, however, causes conversion to 1, as indicated by a white precipitate identified as 1 by IR spectral comparison with authentic material, and the presence in the NMR spectrum now of only the two resonances due to free pdD₂, a quintet at 1.75 ppm and a triplet at 3.66 ppm.

In conclusion, we have successfully converted $[Ga_{10}(OMe)_{20}(O_2CMe)_{10}]$ (1) to the analogue in which pairs

of MeO⁻ groups have been replaced by the diolate pd^{2-} and found that the resulting wheel has doubled in nuclearity to $[Ga_{20}(pd)_{20}(O_2CMe)_{20}]$ (2). This interesting result also provides the largest single-strand molecular wheel to date, and augurs well for further wheel size modifications being possible as a function of the diolate employed; such studies are currently in progress. There are also magnetic implications of this work, even though Ga(III) is diamagnetic: extension to large M_{20} wheels for paramagnetic metals such as Cr(III), Fe(III), etc. would provide larger analogues of the known wheels for these metals and thus provide a greater range of wheel sizes for the study of magnetic properties vs. size, and the relationship to the 1-D spin chain limit. Note that Cr₂₀ and Fe₂₀ analogues of 2 would contain essentially only one type (or at least very similar types) of pairwise exchange parameters, since all M₂ pairs have the same bridging ligands, as mentioned earlier. In effect, crystals of such materials would represent a collection of single-size (monodisperse) spin chains in which the magnetic properties would be specific for that chain length rather than represent the average for a distribution of chain lengths, as is the usual case in the study of spin chains.

This work was supported by the National Science Foundation (CHE-0414555).

Notes and references

[‡] Vacuum-dried solid analysed as **2**·2MeCN. Calcd. (found): C, 30.18 (30.06); H, 4.53 (4.45); N, 0.68 (0.67%). Crystal data for **2**·25MeCN: C₁₅₀H₂₅₅Ga₂₀N₂₅O₈₀, $M_w = 5083.22$, monoclinic, space group P2/n with a = 22.768(5) Å, b = 33.543(7) Å, c = 29.161(7) Å, $\beta = 97.201(4)$, V = 22095(9) Å³, T = 173(2) K, Z = 4, 89990 reflections collected, 28911 unique ($R_{int} = 0.2296$), $R1 [I > 2\sigma(I)] = 0.1007$, wR2 = 0.2210 (F², all data). Many crystals from multiple preparations were screened and all were found to be weak diffractors of X-rays, no doubt due to the large amount of disordered solvent in the crystal. This limited the usable data collected, and thus only the Ga atoms were refined anisotropically. CCDC 692717.

- V. Gerbeleu, Yu. T. Struchkov, G. A. Timko, A. S. Batsanov, K. M. Indrichan and G. A. Popovich, *Dokl. Akad. Nauk SSSR*, 1990, **313**, 1459.
- K. L. Taft and S. J. Lippard, J. Am. Chem. Soc., 1990, 112, 9629.
 P. King, T. C. Stamatatos, K. A. Abboud and G. Christou, Angew.
- Chem., Int. Ed., 2006, 45, 7379 and references cited therein.
 4 (a) J. K. Beattie, T. W. Hambley, J. A. Klepetko, A. F. Masters and P. Turner, Chem. Commun., 1998, 45; (b) E. K. Brechin,

O. Cador, A. Caneschi, C. Cadiou, S. G. Harris, S. Parsons, M. Vonci and R. E. P. Winpenny, *Chem. Commun.*, 2002, 1860.

- 5 (a) I. M. Atkinson, C. Benelli, M. Murrie, S. Parsons and R. E. P. Winpenny, *Chem. Commun.*, 1999, 285; (b) M. Eschel, A. Bino, I. Felner, D. C. Johnston, M. Luban and L. L. Miller, *Inorg. Chem.*, 2000, **39**, 1376; (c) M. Affronte, S. Carretta, G. A. Timco and R. E. P. Winpenny, *Chem. Commun.*, 2007, 1789, and references therein.
- 6 (a) G. A. Ardizzoia, M. A. Angaroni, G. LaMonica, F. Cariati, M. Moret and N. Masciocchi, J. Chem. Soc., Chem. Commun., 1990, 1021; (b) G. Mezei, P. Baran and R. G. Raptis, Angew. Chem., Int. Ed., 2004, 43, 573.
- 7 L. G. Westin, M. Kritikos and A. Caneschi, Chem. Commun., 2003, 1012.
- G. L. Abbati, A. Cornia, A. C. Fabretti, A. Caneschi and D. Gatteschi, *Inorg. Chem.*, 1998, **37**, 1430; (b) M. Murugesu, W. Wernsdorfer, K. A. Abboud and G. Christou, *Angew. Chem.*, *Int. Ed.*, 2005, **44**, 892; (c) D. Foguet-Albiol, T. A. O'Brien, W. Wernsdorfer, B. Moulton, M. J. Zaworotko, K. A. Abboud and G. Christou, *Angew. Chem.*, *Int. Ed.*, 2005, **44**, 897.
- 9 (a) A. J. Blake, C. M. Grant, S. Parsons, J. M. Rawson and R. E. P. Winpenny, J. Chem. Soc., Chem. Commun., 1994, 2363;
 (b) A. L. Dearden, S. Parsons and R. E. P. Winpenny, Angew. Chem., Int. Ed., 2001, 40, 151; (c) C. Cadiou, M. Murrie, C. Paulsen, V. Villar, W. Wernsdorfer and R. E. P. Winpenny, Chem. Commun., 2001, 2666.
- 10 (a) H. Kumagai and S. Kitagawa, *Chem. Lett.*, 1996, 471; (b) Y. Chen, Q. Liu, Y. Deng, H. Zhu, C. Chen, H. Fan, D. Liao and E. Gao, *Inorg. Chem*, 2001, **40**, 3723.
- 11 G. S. Papaefstathiou, A. Manessi, C. P. Raptopoulou, A. Terzis and T. F. Zafiropoulos, *Inorg. Chem.*, 2006, 45, 8823.
- 12 S. P. Watton, P. Fuhrmann, L. E. Pence, A. Caneschi, A. Cornia, G. L. Abbati and S. J. Lippard, *Angew. Chem., Int. Ed. Engl.*, 1997, 36, 2774.
- 13 Th. C. Stamatatos, K. A. Abboud, W. Wernsdorfer and G. Christou, *Angew. Chem., Int. Ed.*, 2008, **47**, 6694.
- 14 A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud and G. Christou, *Angew. Chem., Int. Ed.*, 2004, **43**, 2117.
- 15 (a) A. Müller and C. Serain, Acc. Chem. Res., 2000, 33, 2, and references cited therein; (b) B. Salignac, S. Riedel, A. Dolbecq, F. Sécheresse and E. Cadot, J. Am. Chem. Soc., 2000, 122, 10381.
- (a) A. Chiolero and D. Loss, *Phys. Rev. Lett.*, 1998, **80**, 169;
 (b) F. Meier and D. Loss, *Phys. Rev. B.*, 2001, **64**, 224411;
 (c) F. Meier and D. Loss, *Phys. Rev. Lett.*, 2001, **86**, 5373.
- (a) R. W. Saalfrank, I. Bernt, E. Uller and F. Hampel, Angew. Chem., Int. Ed. Engl., 1997, 36, 2482; (b) G. A. Timco, A. S. Batsanov, F. K. Larsen, C. A. Muryn, J. Overgaard, S. J. Teat and R. E. P. Winpenny, Chem. Commun., 2005, 3649; (c) E. J. L. McInnes, S. Piligkos, G. A. Timco and R. E. P. Winpenny, Coord. Chem. Rev., 1995, 139, 313.