

## A Large [Mn<sub>10</sub>Na]<sub>4</sub> Loop of Four Linked Mn<sub>10</sub> Loops

Eleni E. Moushi,<sup>†</sup> Christos Lampropoulos,<sup>‡</sup> Wolfgang Wernsdorfer,<sup>§</sup> Vassilios Nastopoulos,<sup>II</sup> George Christou,<sup>\*,‡</sup> and Anastasios J. Tasiopoulos<sup>\*,†</sup>

Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Institut Néel, CNRS, BP-166, Grenoble Cedex 9, France, and Department of Chemistry, University of Patras, 26500 Patras, Greece

Received December 21, 2006

A large [Mn<sub>10</sub>Na]<sub>4</sub> loop-of-loops aggregate was prepared from the use of 1,3-propanediol (pdH<sub>2</sub>) in manganese carboxylate chemistry. It is constructed from four [Mn<sub>10</sub>( $\mu_3$ -O)<sub>2</sub>(O<sub>2</sub>CMe)<sub>13</sub>(pd)<sub>6</sub>(py)<sub>2</sub>]<sup>-</sup> loops linked through Na<sup>+</sup> ions and exhibits a saddlelike topology. Magnetic characterization showed that the Mn<sub>10</sub> loop has an  $S \sim$  4 ground-state spin and displays frequency-dependent in-phase and out-of-phase alternating current signals and also hysteresis loops that, however, are not typical of single-molecule magnets because of the existence of intermolecular interactions between the Mn<sub>10</sub> units.

The current intense interest in paramagnetic 3d transitionmetal clusters has resulted in a number of beautiful complexes, some of which contain a large number of metal ions (up to 84).<sup>1</sup> The main reason for this interest is the fact that such molecules can function as magnets below a critical temperature, providing a new "bottom-up" approach to nanoscale magnetic materials.<sup>2</sup> Although there are now many species displaying single-molecule magnet (SMM) behavior, most of them from manganese carboxylate chemistry,<sup>1c-6</sup> there is a continuing need for new structural types. One of the most successful synthetic approaches to new polynuclear

§ CNRS.

- (a) Murugesu, M.; Clérac, R.; Anson, C. E.; Powell, A. K. *Inorg. Chem.* 2004, 43, 7269. (b) Scott, R. T. W.; Parsons, S.; Murugesu, M.; Wernsdorfer, W.; Christou, G.; Brechin, E. K. *Angew. Chem., Int. Ed.* 2005, 44, 6540. (c) Tasiopoulos, A. J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. *Angew. Chem., Int. Ed.* 2004, 43, 2117.
- (2) Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804.
- (3) (a) Tasiopoulos, A. J.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Inorg. Chem. 2005, 44, 6324. (b) Maheswaran, S.; Chastanet, G.; Teat, S. J.; Mallah, T.; Sessoli, R.; Wernsdorfer, W.; Winpenny, R. E. P. Angew. Chem., Int. Ed. 2005, 44, 5044.
- (4) (a) Murugesu, M.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Angew. Chem., Int. Ed. 2005, 44, 892. (b) Ako, A. M.; Hewitt, I. J.; Mereacre, V.; Clérac, R.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Angew. Chem., Int. Ed. 2006, 45, 4926.

10.1021/ic0624540 CCC: \$37.00 © 2007 American Chemical Society Published on Web 04/20/2007

clusters involves the use of chelates containing alcohol groups because alkoxides are good bridging groups and thus favor the formation of polynuclear products.<sup>1b,4–6</sup> Recently, we have been investigating the use of 1,3-propanediol (pdH<sub>2</sub>) in manganese carboxylate chemistry.<sup>6</sup> We herein report the synthesis, crystal structure, and magnetic properties of a molecular aggregate that consists of four repeating units of the new [Mn<sub>10</sub>Na( $\mu_3$ -O)<sub>2</sub>(O<sub>2</sub>CMe)<sub>13</sub>(pd)<sub>6</sub>(py)<sub>2</sub>] (1) loop linked through the Na<sup>+</sup> ions. This novel tetrameric [1]<sub>4</sub> loop-of-loops is the second-largest Mn cluster reported to date,<sup>1c</sup> has a saddlelike topology, and crystallizes in an aesthetically pleasing manner, forming egg-shaped stacks.

The reaction of  $[Mn_3O(O_2CMe)_6(py)_3]$ •py (py = pyridine) with pdH<sub>2</sub> and NaN<sub>3</sub><sup>7</sup> in a 1:4:1 molar ratio in MeCN resulted in a dark-brown slurry, which was filtered to give a brown filtrate and a brown powder. The filtrate was left undisturbed at room temperature for a few days and slowly gave redbrown crystals of  $[1\cdot2.4H_2O]_4$  in 32% yield; dried solid was hygroscopic and analyzed as  $[1\cdot10H_2O]_4$ . The crystal structure<sup>8</sup> of  $[1\cdot2.4H_2O]_4$  consists of a mixed-valent loop (Figure 1) containing two Mn<sup>II</sup> and eight Mn<sup>III</sup> ions, as determined by bond valence sum (BVS) calculations,<sup>9</sup> charge considerations, and inspection of metric parameters. Compound **1** can be described as a dimer of Mn<sub>5</sub> units (Mn atoms 1,2,8,9,10 and 3,4,5,6,7) linked between Mn7/Mn8 by two  $\mu$ -O atoms of different pd<sup>2-</sup> groups and between Mn2/Mn3

- (6) Moushi, E. E.; Stamatatos, T. C.; Wernsdorfer, W.; Nastopoulos, V.; Christou, G.; Tasiopoulos, A. J. Angew. Chem., Int. Ed. 2006, 45, 7722.
- (7) When this reaction was repeated with other Na<sup>+</sup> sources like NaCN, NaSCN, and Na[N(CN)<sub>2</sub>], the same product was isolated in slightly smaller yields. However, when NaClO<sub>4</sub> was used as a Na<sup>+</sup> source, the product that was isolated was the {Mn<sub>19</sub>}<sub>∞</sub> 3D coordination polymer reported elsewhere.<sup>6</sup>
- (8) Crystal structure data for [1·2.4H<sub>2</sub>O]<sub>4</sub>: C<sub>216</sub>H<sub>359,2</sub>O<sub>169,60</sub>N<sub>8</sub>Na<sub>4</sub>Mn<sub>40</sub>, M = 8071.49, tetragonal,  $I4_1/a$ , a = 25.0996(5) Å, c = 70.929(2) Å, V = 44685(2) Å<sup>3</sup>, T = 100 (2) K, Z = 4,  $\rho_{calcd} = 1.197$  g cm<sup>-3</sup>, 102 512 reflections collected, 20 625 unique ( $R_{av} = 0.0655$ ), R1 = 0.0545, wR2 = 0.1537, using 10 737 reflections with  $I > 2\sigma(I)$ .
- (9) (a) BVS calculations for the Mn ions of 1 gave oxidation state values of 2.88–2.94 (Mn<sup>III</sup>) and 2.05 (Mn<sup>II</sup>). (b) Liu, W.; Thorp, H. H. *Inorg. Chem.* 1993, *32*, 4102.

## Inorganic Chemistry, Vol. 46, No. 10, 2007 3795

<sup>\*</sup> To whom correspondence should be addressed. E-mail: christou@ chem.ufl.edu (G.C.), atasio@ucy.ac.cy (A.J.T.).

<sup>&</sup>lt;sup>†</sup> University of Cyprus.

<sup>&</sup>lt;sup>‡</sup> University of Florida.

<sup>&</sup>quot;University of Patras.

<sup>(5) (</sup>a) Murugesu, M.; Wernsdorfer, W.; Abboud, K. A.; Brechin, E. K.; Christou, G. *Dalton Trans.* 2006, 2285. (b) Wittick, L. M.; Murray, K. S.; Moubaraki, B.; Batten, S. R.; Spiccia, L.; Berry, K. J. *Dalton Trans.* 2004, 1003.



Figure 1. Molecular structure of 1. Color code:  $Mn^{III}$ , blue;  $Mn^{II}$ , cyan; O, red; N, green; Na, purple. H atoms are omitted for clarity.

again by two  $pd^{2-}\mu$ -O atoms and also a  $\mu$ -O<sub>2</sub>CMe<sup>-</sup> group. Each Mn<sub>5</sub> unit consists of triangular [Mn<sup>III</sup><sub>3</sub>O]<sup>7+</sup> and dinuclear Mn<sup>II</sup>Mn<sup>III</sup> subunits linked by  $\mu$ -O<sub>2</sub>CMe<sup>-</sup> and  $\eta^2$ : $\eta^2$ :  $\mu_4$ -MeCO<sub>2</sub><sup>-</sup> groups and a pd<sup>2-</sup>  $\mu$ -O atom. The peripheral ligation of the Mn<sup>II</sup>Mn<sup>III</sup> subunit is completed by  $\mu$ -O<sub>2</sub>CMe<sup>-</sup> and  $pd^{2-}\mu$ -O atoms, which bridge the Mn<sup>II</sup> and Mn<sup>III</sup> ions, and a terminal py ligand. The Mn ions of the triangular unit are bridged by a  $\mu_3$ -O<sup>2-</sup> ion, two pd<sup>2-</sup> and one O<sub>2</sub>CMe<sup>-</sup>  $\mu$ -O atoms, and two  $\mu_3$ -MeCO<sub>2</sub><sup>-</sup> ligands. The latter and an additional acetate group link each triangular unit to a Na<sup>+</sup> ion. The two  $Na^+$  ions attached to the  $Mn_{10}$  loop then each connect in an equivalent way to a different neighboring Mn<sub>10</sub> loop, resulting in the formation of a tetrameric  $[1]_4$  loop-ofloops (Figure 2a). This aggregate is not planar but instead folds to give a saddlelike conformation, as shown in Figure 2b. Note that although there are a few examples of discrete and polymeric aggregates of 3d metal clusters linked through alkali- or alkaline-earth-metal ions with an overall nuclearity >6, none of them has a nuclearity >20.<sup>5a,6,10</sup> It is also interesting that  $[1]_4$  represents the first example of a loop constructed from smaller loops. The shortest Mn ···· Mn separation between different  $Mn_{10}$  units of  $[1]_4$  is relatively large at 6.382 Å. A close examination of the crystal packing reveals that the  $[1]_4$  aggregates pack as tail-to-tail  $\{[1]_4\}_2$ dimers, thus giving aesthetically pleasing egg-shaped stacks (Figure 3). The central cavity of the  $\{[1]_4\}_2$  dimer has dimensions of approximately  $8 \times 17$  Å and contains a small amount of  $H_2O$  of crystallization. The  $[1]_4$  units within a dimer and between different dimers are similarly spaced (the shortest separation between the tails of two different  $[1]_4$ units and between the heads of two different  $[1]_4$  units is ~3.2-3.4 Å).

Direct current (dc) magnetic susceptibility data on a microcrystalline powdered sample of  $1 \cdot 10H_2O$  were recorded in the 5.0–300 K temperature range using an applied field of 0.1 T. The  $\chi_M T$  value per Mn<sub>10</sub> at 300 K is 28.42 cm<sup>3</sup> mol<sup>-1</sup> K, and it decreases steadily with decreasing temper-



**Figure 2.** Wire-frame representations of  $[1]_4$  from viewpoints that emphasize (a) the tetrameric loop-of-loops structure and (b) the saddlelike folding. Color code: Mn, blue; O, red; N, green; Na, purple. H atoms are omitted for clarity.



**Figure 3.** Wire-frame representation viewed along the *a* axis of the packing of  $[1]_4$  as  $\{[1]_4\}_2$  dimers. H atoms and H<sub>2</sub>O molecules of crystallization are omitted for clarity. The color code is as in Figure 2.

ature to 8.48 cm<sup>3</sup> mol<sup>-1</sup> K at 5.0 K. These data suggest the existence of strong antiferromagnetic interactions within **1**, with the value at 5.0 K being in the region expected for an S = 4 ground state (spin-only value of 10 cm<sup>3</sup> mol<sup>-1</sup> K). In order to confirm the ground state, magnetization data were collected in the temperature and magnetic field ranges of 1.8–10.0 K and 0.1–7.0 T, respectively. Attempts were made to fit the resulting data using the program *MAGNET*,<sup>11</sup> which assumes that only the ground state is populated at these temperatures and includes axial zero-field-splitting

<sup>(10) (</sup>a) Brechin, E. K.; Gould, R. O.; Harris, S. G.; Parsons, S.; Winpenny, R. E. P. *J. Am. Chem. Soc.* **1996**, *118*, 11293. (b) Aromi, G.; Roubeau, O.; Helliwell, M.; Teat, S. J.; Winpenny, R. E. P. *Dalton Trans.* **2003**, 3436. (c) Duraisamy, T.; Ojha, N.; Ramanan, A.; Vittal, J. J. *Chem. Mater.* **1999**, *11*, 2339.

<sup>(11)</sup> Davidson, E. R. MAGNET; Indiana University: Bloomington, IN.



**Figure 4.** In-phase  $\chi_m'$  (as  $\chi_m'T$ ) (top) and out-of-phase  $\chi_m''$  (bottom) ac magnetic susceptibilities for **1**·10H<sub>2</sub>O.

 $(D\hat{S}_z^2)$  and Zeeman interactions. However, it was not possible to obtain a good fit. This is likely due to the presence of low-lying excited states that are populated even at these low temperatures (as indeed is expected for such a large molecule containing Mn<sup>II</sup>) and intermolecular interactions between the neighboring Mn<sub>10</sub> units, which are not included in the fitting model.<sup>1c,4a,12</sup>

Reliable conclusions about the ground state S value can, nevertheless, be reached by using alternating current (ac) magnetic susceptibility measurements, 3a,4a which also can detect the slow magnetization relaxation suggestive of SMMs. The in-phase  $\chi_m T$  increases with increasing temperature, confirming low-lying excited states (Figure 4, top). Extrapolation of the  $\chi_m T$  vs *T* plots to 0 K (from  $T \ge 4$  K to avoid the effects of slow relaxation at lower T) gives a value of  $\sim 8.5 \text{ cm}^3 \text{ mol}^{-1} \text{ K}$ , which is consistent with S = 4(assuming  $g \sim 1.85$ ). Below 3 K,  $\chi_m T$  is frequencydependent, and there is a concomitant frequency-dependent, out-of-phase ac susceptibility  $(\chi_m'')$  signal for 1, whose peaks clearly lie at T < 1.8 K (Figure 4, bottom). This suggests that 1 might be a SMM, and in order to confirm this, magnetization vs applied dc field data down to 0.04 K were collected on single crystals of [1.2.4H<sub>2</sub>O]<sub>4</sub> using a micro-SQUID apparatus.<sup>13</sup> The resulting magnetization responses at different temperatures and a fixed-field sweep rate of 0.070 T s<sup>-1</sup> are shown in Figure 5. Hysteresis loops become evident in the scans at 4 K, but they only have a small coercivity. The latter increases, but only slightly, with decreasing temperature down to 0.04 K. This is not typical SMM behavior, for which one would normally expect a greater



<sup>(13)</sup> Wernsdorfer, W. Adv. Chem. Phys. 2001, 118, 99.



**Figure 5.** Magnetization (*M*) vs field hysteresis loops for single crystals of  $[1 \cdot 2.4 H_2 O]_4$  at the indicated temperatures. The magnetization is normalized to its saturation value (*M*<sub>S</sub>).

dependence of the coercivity on the temperature. It is likely that this behavior is instead due to a combination of an intrinsic barrier to magnetization relaxation for each  $Mn_{10}$  unit, and exchange interactions between the neighboring  $Mn_{10}$  units of the same [1]<sub>4</sub> cluster (mediated through the connecting Na<sup>+</sup> ions) as well as of different tetrameric units.<sup>14</sup>

In summary, the use of pdH<sub>2</sub> has yielded a large Mn<sub>40</sub>Na<sub>4</sub> loop-of-loops aggregate of four Mn<sub>10</sub> loops with an aesthetically pleasing saddlelike topology. Because the Na<sup>+</sup> ions are intimately associated with the  $Mn_{10}$  loops, the compound can also accurately be described as a mixed-metal M<sub>44</sub> cluster, the second-largest Mn cluster reported to date.<sup>1c</sup> Each Mn<sub>10</sub> loop has a ground-state spin of S = 4 and displays hysteresis loops in magnetization vs dc field scans that, however, are not typical of an SMM due to intermolecular interactions between the neighboring Mn<sub>10</sub> units. Substitution of the Na<sup>+</sup> ions with paramagnetic 3d or 4f metal ions could lead to a magnetically interesting single  $Mn_{40}M_4$  aggregate rather than four weakly interacting Mn<sub>10</sub> units, and such studies are in progress. Finally, the tetrameric [Mn<sub>10</sub>]<sub>4</sub> loop-of-loops suggests that other related aggregates of metal-linked loops or even discrete supramolecular assemblies of loops might also be possible as this work, and the chemistry of loop/wheel complexes in general,<sup>15</sup> is extended in the future.

Acknowledgment. This work was supported by the University of Cyprus, the Cyprus Research Promotion Foundation, and the U.S.A. National Science Foundation.

**Supporting Information Available:** X-ray crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

## IC062454O

<sup>(14)</sup> A similar behavior (i.e., detection of out-of-phase ac signals combined with observation of similar, butterfly-type, hysteresis loops) has been observed for a Mn<sub>7</sub> cluster with PhSeO<sub>2</sub> ligation and was also attributed to intermolecular interactions via Se····O contacts between the Mn<sub>7</sub> units.<sup>12</sup>

<sup>(15) (</sup>a) King, P.; Stamatatos, T. C.; Abboud, K. A.; Christou, G. Angew. Chem., Int. Ed. 2006, 45, 7379. (b) Saalfrank, R. W.; Prakash, R.; Maid, H.; Hampel, F.; Heinemann, F. W.; Trautwein, A. X.; Böttger, L. H. Chem. – Eur. J. 2006, 12, 2428. (c) Timco, G. A.; Batsanov, A. S.; Larsen, F. K.; Muryn, C. A.; Overgaard, J.; Teat, S. J.; Winpenny, R. E. P. Chem. Commun. 2005, 3649.