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Quantum Phase Interference and Spin-Parity in Mn12 Single-Molecule Magnets
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Magnetization measurements of Mn12 molecular nanomagnets with spin ground states of S � 10 and
S � 19=2 show resonance tunneling at avoided energy level crossings. The observed oscillations of the
tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to
topological quantum phase interference of two tunnel paths of opposite windings. Spin-parity dependent
tunneling is established by comparing the quantum phase interference of integer and half-integer spin
systems.
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Single-molecule magnets (SMMs) are among the most
promising candidates to observe the limits between classi-
cal and quantum physics since they have a well defined
structure, spin ground state, and magnetic anisotropy. The
first SMM was Mn12acetate [1]. It exhibits slow magneti-
zation relaxation of its S � 10 ground state which is split
by axial zero-field splitting. It was the first system to show
thermally assisted tunneling of magnetization [2,3], and
Fe8 and Mn4 SMMs were the first to exhibit ground state
tunneling [4,5]. Tunneling was also found in other SMMs
(see, for instance, [6–8]).

Quantum phase interference [9] and spin-parity effects
are among the most interesting quantum phenomena that
can be studied at the mesoscopic level in SMMs. The
former was recently observed in Fe8 and �Mn12�

2�

SMMs [10,11] and has led to many new theoretical studies
on this effect in spin systems [12–21]. The latter predicts
that quantum tunneling is suppressed at zero applied field
if the total spin of the magnetic system is half-integer
but is allowed in integer spin systems. Enz, Schilling,
Van Hemmen, and Süto [22,23] were the first to suggest
the absence of tunneling as a consequence of Kramers
degeneracy [24]. It was then shown that tunneling can
even be absent without Kramers degeneracy [9,25,26],
i.e., quantum phase interference can lead to destructive
interference and thus suppression of tunneling.

There are several reasons why quantum phase interfer-
ence [10,11] and spin-parity effects [27] are difficult to
observe. The main one is the influence of environmental
degrees of freedom that can induce or suppress tunneling:
hyperfine and dipolar couplings can induce tunneling via
transverse field components, intermolecular exchange cou-
pling may enhance or suppress tunneling depending on its
strength, phonons can induce transitions via excited states,
and faster-relaxing species can complicate the interpreta-
tion [28].

We present here the first half-integer spin SMM that
clearly shows quantum phase interference and spin-parity
effects. The syntheses, crystal structures, and magnetic
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properties of the studied complexes are reported elsewhere
[29]. The compounds are �Mn12O12�O2CC6F5�16�H2O�4�,
�NMe4��Mn12O12�O2CC6F5�16�H2O�4�, and
�NMe4�2�Mn12O12�O2CC6F5�16�H2O�4� (called Mn12,
�Mn12�

�, and �Mn12�
2�, respectively). Reaction of Mn12

with one and two equivalents of NMe4I affords the one-
and two-electron reduced analogs, �Mn12�

� and �Mn12�
2�,

respectively. The three complexes crystallize in the tri-
clinic P1 bar, monoclinic P2=c, and monoclinic C2=c
space groups, respectively, with all molecules in the crys-
tals aligned with their z axes parallel. This crystallographic
finding has been confirmed using the transverse-field
method [30]. The molecular structures are all very similar,
each consisting of a central �MnIVO4� cubane core that is
surrounded by a nonplanar ring of eight MnIII ions. Bond
valence sum calculations establish that the added electrons
in �Mn12�

� and �Mn12�
2� are localized on former MnIII

ions giving trapped-valence MnIV4 MnIII7 MnII and
MnIV4 MnIII6 MnII2 anions, respectively.

Magnetization studies yield S � 10, D � 0:58 K, g �
1:87 for Mn12, S � 19=2, D � 0:49 K, g � 2:04, for
�Mn12�

�, and S � 10, D � 0:42 K, g � 2:05, for
�Mn12�

2�, where D is the axial zero-field splitting parame-
ter [29]. AC susceptibility and relaxation measurements
give Arrhenius plots from which were obtained the effec-
tive barriers to magnetization reversal: 59 K for Mn12, 49 K
for �Mn12�

�, and 25 K for �Mn12�
2�.

The simplest model describing the spin system of the
three Mn12 SMMs has the following Hamiltonian

H � �DS2z � E�S2x � S2y� � g�B�0
~S ~H : (1)

Sx, Sy, and Sz are the three components of the spin opera-
tor, D and E are the anisotropy constants, and the last term
describes the Zeeman energy associated with an applied
field ~H. This Hamiltonian defines hard, medium, and easy
axes of magnetization in the x, y, and z directions, respec-
tively, (Fig. 1). It has an energy level spectrum with (2S�
1) values which, to a first approximation, can be labeled by
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the quantum numbers m � �S;��S� 1�; . . . ; S taking the
z axis as the quantization axis. The energy spectrum can be
obtained by using standard diagonalization techniques of
the ��2S�1���2S�1�� matrix. At ~H � 0, the levels m �
	S have the lowest energy. When a field Hz is applied,
the levels with m< 0 increase in energy, while those with
m> 0 decrease. Therefore, energy levels of positive and
negative quantum numbers cross at certain values of Hz,
given by �0Hz 
 nD=g�B, with n � 0; 1; 2; 3; . . . .

When the spin Hamiltonian contains transverse terms
(for instance E�S2x � S2y�), the level crossings can be
avoided level crossings. The spin S is in resonance between
two states when the local longitudinal field is close to an
avoided level crossing. The energy gap, the so-called tun-
nel spitting �, can be tuned by a transverse field (Fig. 1) via
the SxHx and SyHy Zeeman terms. In the case of the
transverse term E�S2x � S2y�, it was shown that � oscillates
with a period given by [9]

�0�H �
2kB
g�B

�����������������������
2E�E�D�

p
: (2)

The oscillations are explained by constructive or destruc-
tive interference of quantum spin phases (Berry phases) of
two tunnel paths [9] (Fig. 1).
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FIG. 1. Unit sphere showing degenerate minima A and B
joined by two tunnel paths (heavy lines). The hard, medium,
and easy axes are taken in the x , y, and z direction, respectively.
The constant transverse field Htrans for tunnel splitting measure-
ments is applied in the xy plane at an azimuth angle ’. At zero
applied field ~H � 0, the giant spin reversal results from the
interference of two quantum spin paths of opposite direction in
the easy anisotropy yz plane. For transverse fields in the direc-
tion of the hard axis, the two quantum spin paths are in a plane
which is parallel to the yz plane, as indicated in the figure. It has
been shown [9] that destructive interference—that is a quench of
the tunneling rate—occurs whenever the shaded area is k�=S,
where k is an odd integer. The interference effects disappear
quickly when the transverse field has a component in the y
direction because the tunneling is then dominated by only one
quantum spin path.
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All measurements were performed on single crystals
using micro-SQUIDs [31]. The field can be applied in
any direction by separately driving three orthogonal
superconducting coils. The field was aligned using the
transverse-field method [30].

Figure 2 shows typical hysteresis loop measurements on
a single crystal of the three Mn12 samples. When the
applied field is near an avoided level crossing, the magne-
tization relaxes faster, yielding steps separated by plateaus.
As the temperature is lowered, there is a decrease in the
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FIG. 2 (color online). Hysteresis loops of single crystals of
(a) Mn12, (b) �Mn12�

�, and (c) �Mn12�
2� molecular clusters at

different temperatures and a constant field sweep rate indicated
in the figure. Note the large zero-field step of �Mn12�

� which is
due to about 30% of fast-relaxing species [34].
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FIG. 3 (color online). Transverse-field dependence of the frac-
tion of Mn12 molecules which reversed their magnetization after
the field was swept over the zero-field resonance at a rate of
0:28 T=s and at several temperatures.
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FIG. 4 (color online). Transverse-field dependence of the frac-
tion of �Mn12�

� molecules which reversed their magnetization
after the field was swept over the zero-field resonance at a rate of
0:28 T=s (a) at several temperatures and (b) at 1.7 K and two
azimuth angles ’. The contribution of the fast-relaxing species is
subtracted [34]. The observed oscillations are direct evidence for
quantum phase interference. The minimum of the tunnel rate at
zero transverse field is due to Kramers spin-parity.
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transition rate as a result of reduced thermally assisted
tunneling. Below about Tc � 0:65, 0.5, and 0.35 K, respec-
tively, for Mn12, �Mn12�

�, and �Mn12�
2�, the hysteresis

loops become temperature independent, which suggests
that ground state tunneling is dominating. The field be-
tween two resonances allows an estimation of the anisot-
ropy constants D, and values of D 
 0:64, 0.44, and 0.42 K
were determined (supposing g � 2), respectively, for
Mn12, �Mn12�

�, and �Mn12�
2�, being in good agreement

with other magnetization studies [29].
We have tried to use the Landau-Zener method [32,33]

to measure the tunnel splitting as a function of transverse
field as previously reported for Fe8 [10]. However, the
tunnel probability in the pure quantum regime (below Tc)
was too small for our measuring technique [34] for Mn12
and �Mn12�

�. We therefore studied the tunnel probability
in the thermally activated regime [35].

In order to measure the tunnel probability, the crystals of
Mn12 SMMs were first placed in a high negative field,
yielding a saturated initial magnetization. Then, the ap-
plied field was swept at a constant rate of 0:28 T=s over the
zero-field resonance transitions and the fraction of mole-
cules which reversed their spin was measured. In the case
of very small tunnel probabilities, the field was swept back
and forth over the zero-field resonance until a larger frac-
tion of molecules reversed their spin. A scaling procedure
yields the probability of one sweep. This experiment was
then repeated but in the presence of a constant transverse
field. A typical result is presented in Fig. 3 for Mn12
showing a monotonic increase of the tunnel probability.
Measurements at different azimuth angles ’ (Fig. 1) did
not show a significant difference. However, similar mea-
surements on �Mn12�

� (Fig. 4) and �Mn12�
2� (Fig. 5)

showed oscillations of the tunnel probability as a function
of the magnetic field applied along the hard anisotropy axis
’ � 0� whereas no oscillations are observed for ’ � 90�.
03720
These oscillations are due to topological quantum interfer-
ence of two tunnel paths of opposite windings [9]. The
measurements of �Mn12�

2� are similar to the result on the
Fe8 molecular cluster [10,35]; however, those of �Mn12�

�

show a minimum of the tunnel probability at zero trans-
verse field. This is due to the spin-parity effect that predicts
the absence of tunneling as a consequence of Kramers
degeneracy [24]. The period of oscillation allows an esti-
mation of the anisotropy constant E [see Eq. (2)] and
values of E 
 0, 0.047, and 0.086 K were obtained for
Mn12, �Mn12�

�, and �Mn12�
2�, respectively.

In conclusion, magnetization measurements of three
molecular Mn12 clusters with a spin ground state of S �
10 and S � 19=2 show resonance tunneling at avoided
energy level crossings. The observed oscillations of the
tunnel probability as a function of a transverse field are due
to topological quantum phase interference of two tunnel
paths of opposite windings. Spin-parity dependent tunnel-
ing is established by comparing the quantum phase inter-
ference of integer and half-integer spin systems.
3-3



1 0-6

1 0-5

1 0-4

1 0-3

1 0-2

1 0-1

-1 -0.5 0 0.5 1

∆∆∆∆ M
/M

s

µµµµ0 H (T)

0.1 K

≈ 90°

≈ 0°

1 0-5

1 0-4

1 0-3

1 0-2

∆∆∆∆ M
/M

s
1.2 K

1.1 K

1.0 K

a

b

FIG. 5 (color online). Transverse-field dependence of the frac-
tion of �Mn12�

2� molecules which reversed their magnetization
after the field was swept over the zero-field resonance at a rate of
0:28 T=s (a) at several temperatures and (b) at 0.1 K and two
azimuth angles ’.
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