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The symmetry of magnetic quantum tunneling (MQT) in the single molecule
magnet Mn12 -acetate has been determined by sensitive low-temperature
magnetic measurements in the pure quantum tunneling regime and high fre-
quency EPR spectroscopy in the presence of large transverse magnetic fields.
The combined data set definitely establishes the transverse anisotropy terms

responsible for the low temperature quantum dynamics. MQT is due to a
disorder induced locally varying quadratic transverse anisotropy associated
with rhombic distortions in the molecular environment (2nd order in the
spin-operators). This is superimposed on a 4th order transverse magnetic
anisotropy consistent with the global (average) S4 molecule site symme-
try. These forms of the transverse anisotropy are incommensurate, leading
to a complex interplay between local and global symmetries, the conse-
quences of which are analyzed in detail. The resulting model explains: (1)
the observation of a twofold symmetry of MQT as a function of the angle
of the transverse magnetic field when a subset of molecules in a single crys-
tal are studied; (2) the non-monotonic dependence of the tunneling proba-
bility on the magnitude of the transverse magnetic field, which is ascribed
to an interference (Berry phase)effect; and (3) the angular dependence of
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EPR absorption peaks, including the fine structure in the peaks, among many
other phenomena. This work also establishes the magnitude of the 2nd and
4th order transverse anisotropy terms for Mn12-acetate single crystals and
the angle between the hard magnetic anisotropy axes of these terms. EPR as
a function of the angle of the field with respect to the easy axes (close to the
hard-medium plane) confirms that there are discrete tilts of the molecular
magnetic easy axis from the global (average) easy axis of a crystal, also
associated with solvent disorder. The latter observation provides a very plau-
sible explanation for the lack of MQT selection rules, which has been a puz-
zle for many years.

KEY WORDS: single-molecule magnet, quantum tunneling, molecular nano-
magnet, Mn12-Acetate, EPR, magnetometry

1. INTRODUCTION

The origin of magnetic quantum tunneling (MQT) in single-molecule
magnets (SMMs) is important for fundamental reasons as well as pro-
posed applications, ranging from magnetic data storage to quantum com-
puting.1,2 A macroscopic (millimeter-sized) SMM single crystal to a first
approximation can be considered an ensemble of weakly interacting mole-
cules with the same chemical composition and orientation. In this regard
SMM single crystals are ideal materials in which to study the quantum
properties of magnetic molecules, as the magnetic response is amplified by
the huge number of molecules forming the crystal. The environment of the
molecules in crystals is also well defined and can be characterized by tech-
niques such as x-ray diffraction.

SMMs have a predominant uniaxial magnetic anisotropy that deter-
mines an easy magnetic axis for the spin. MQT is due to interactions
that break this axial symmetry and lead to transitions between magnetic
states with opposite projections of spin on the magnetic easy axis. While
this is fundamental to their quantum dynamics, remarkably only recently
have the nature of the transverse interactions that produce MQT been
determined in the first and most studied SMM, Mn12-acetate (henceforth
Mn12-ac).3−19 Small modulations in the local environment around the
magnetic cores have been found to be important in MQT.16−19 In partic-
ular, it has been shown that in Mn12-ac there are a variety of types of
disorder that affect the magnetic properties of the molecules, including a
distribution of solvent microenvironments, leading to g- and D-strain20−26

and a distribution of tilts of the easy axes of the molecules.27,28

In this paper, we present high sensitivity magnetometry and high fre-
quency electron paramagnetic resonance (EPR) studies carried out on sin-
gle crystals of Mn12-ac. These experimental techniques and an in-depth
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analysis of the implications of the combined data set allow us to deter-
mine the symmetry and origin of MQT. We show that variations in the
local solvent environments around the Mn12O12 magnetic cores are impor-
tant to MQT because they lower the symmetry of the core and lead to tilts
of the magnetic easy axis. Disorder in the molecules’ solvent environment
can explain many of the features observed experimentally. This includes
non exponential magnetic relaxation, the absence of tunneling selection
rules, an unusual Berry phase effect, and multiple and broad EPR absorp-
tion peaks.

The article is organized as follows: In Sec. 2 we analyze the spin
Hamiltonian of Mn12-ac and discuss the symmetry of MQT expected
based on this Hamiltonian. The effect of a disorder induced trans-
verse anisotropy combined with intrinsic transverse anisotropy has inter-
esting consequences for MQT that we explore in depth. In Sec. 3 we
describe magnetic relaxation measurements carried out in the pure quan-
tum regime, where the MQT is not assisted by thermal activation.11 Sec. 4
presents high frequency EPR measurements. In Sec. 5, we discuss the
implications of our analysis and measurements to the understanding of
MQT.

2. TUNNELING IN Mn12-AC

Mn12-ac consist of a core of four Mn+4 ions (S = 3/2) surrounded by
a ring of eight Mn+3 ions (spin S = 2) (see Fig. 1). These two groups of
spins order ferrimagnetically producing a net spin S =10(8×2−4×3/2=
10).29−31
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Fig. 1. Energy diagram of the 2S +1=21 projections of the spin S =10 along the easy mag-
netic axis of the Mn12-ac molecule for resonances k=0 and k=1 (note k=m+m′). The tunnel
splitting, �m,m′ , is illustrated in both cases (not to scale). The inset shows the arrangement of
Mn ions looking down the S4 axis of the molecule (z-axis). Note that the spins point up and
down along this axis, perpendicular to the plane of the page.
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The spin Hamiltonian of [Mn12O12(CH3COO)16 (H2O)4]·2CH3
COOH·4H2O is given by

H=−DS2
z −BS4

z −gµBHzSz +HT +HA +H′, (1)

The first two terms represent the uniaxial magnetic anisotropy of the
molecule (D > 0 and B > 0). The parameters, D and B, have been deter-
mined by high frequency EPR and neutron scattering experiments.7,12,13

This spin-Hamiltonian, in a semiclassical view, describes a double potential
well, in which opposite projections of the spin onto the z-axis are separated
by an anisotropy energy barrier ∼ DS2 +BS4 (∼60 K) (see Fig. 1). The third
term is the Zeeman energy due to the longitudinal component of an external
magnetic field, Hz =H cos θ , where H is given in units of tesla (i.e. we set
µ0 =1) and θ is the angle between the field and the easy axis of the molecule.
A magnetic field applied along the z-axis shifts the double well potential and
the energies of the projections of the magnetization. At certain values of the
z-axis field (resonance fields) the levels m and m′ with antiparallel projec-
tions onto the z-axis have nearly the same energy, Hk ∼ kD/gµB = 0.44 T
(k =m+m′) (see Fig. 1). At these resonances, MQT is turned on by inter-
actions that break the axial symmetry and mix the levels m and m′. These
off-diagonal terms have different origins: (a) HT is the Zeeman interaction
associated with the transverse component of the external magnetic field;
(b) transverse anisotropy terms are included in HA; and (c) H′ character-
izes magnetic fields due to inter-molecular dipolar interactions and nuclear
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Fig. 2. (Color on-line) Magnetization versus field for a single crystal of Mn12-ac for several
sweep rates, α=dH/dt . The measurements have been conducted in the pure quantum regime
at T =0.6 K.11 The observed increases of the magnetization at regularly spaced field intervals,
Hk =D/gµB ∼0.44 T, correspond to MQT at resonances k =6, 7, 8, 9 and 10.
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hyperfine. Off-diagonal terms in the Hamiltonian lift the degeneracy of the
spin-levels at the resonances creating an energy difference between sym-
metric and antisymmetric superpositions of spin-projections that is known
as the tunnel splitting, � (see Fig. 1).

Figure 2 shows magnetization curves measured at 0.6 K for several
sweep rates of the longitudinal field, α = dH/dt , for a single crystal of
Mn12-ac. The abrupt increases of the magnetization toward the equilib-
rium magnetization (M/Ms = 1) are due to MQT at the resonant fields.
It is important to note for our discussion that MQT is observed at con-
secutive resonances. This has important implications for the understanding
of MQT, because transverse anisotropy terms introduce selection rules and
the only interaction that allows MQT at odd-resonances (k=1,3, . . . ) is a
transverse magnetic field.

2.1. Transverse Interactions

The tunneling characteristics depend on the form of the off-diagonal
terms. In this subsection, we will examine the consequences of the
off-diagonal terms in the Hamiltonian on MQT. We consider both trans-
verse magnetic field and anisotropy terms.

2.1.1. Magnetic Fields

The simplest expression for the off-diagonal part of the Hamiltonian
of Eq. (1), involving a transverse magnetic field, HT , is

HT =−gµBHT(Sx cosφ +Sy sin φ). (2)

This represents the Zeeman energy for a field in the x–y plane at an angle
φ with respect to the x-axis. The tunnel splitting, �, is very sensitive to
this field, HT =

√
H 2

x +H 2
y . The dependence of � on HT for small trans-

verse magnetic fields (HT �HD = 2DS/gµB, the anisotropy field) is given
by Ref. 32,

�k(HT)=gk

(
HT

HD

)ξk

, (3)

where gk = 2D

[(2S−k−1)]2
×
√

(2S−k)!(2S)
k! and ξk =2S −k. The power law depen-

dence of � on HT causes the tunnel splitting to vary by many orders of
magnitude for transverse fields in the range of a few Tesla. This allows the
study of MQT with a wide range of experimental techniques that go from
quasi-static magnetization measurements (�/h ∼ Hz) to high frequency
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EPR experiments (�/h ∼ 100 GHz) simply by varying the magnitude of
the applied transverse field.

2.1.2. Transverse Anisotropies

Now we examine the effect of transverse anisotropy terms in the
Hamiltonian. Considering only the lowest order terms, HA has the form

HA =E(S2
x −S2

y )+C(S4
+ +S4

−). (4)

The first term is the second order anisotropy which is allowed for
SMMs with rhombic symmetry (e.g. Fe8 (Ref. 33) and, as will be shown
below, is also present in Mn12-ac due to disorder that lowers the S4 sym-
metry of the molecules.16,18,19) The second term is fourth order in the
spin operators and is the lowest order anisotropy allowed with tetrago-
nal symmetry. This form of the transverse anisotropy has been observed
in EPR studies of several SMMs of tetragonal symmetry such as, Mn12-
ac19, Mn12-BrAc and Ni4 (Ref. 34).

Let us consider in detail the consequences of each transverse anisotropy
term. In Fig. 3, we show the shape of the classical anisotropy barrier sep-
arating antiparallel orientations of the spin z-projections (colored arrows).
In the absence of transverse terms (Fig. 3a), the anisotropy barrier is deter-
mined by the uniaxial anisotropy of the molecules (first and second terms in
Hamiltonian of Eq. (1)). These uniaxial anisotropy terms determine a hard
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Fig. 3. (Color on-line) 3D representations of the anisotropy barrier. (a) Uniaxial anisotropy
barrier in the absence of transverse anisotropy terms. The colored arrows represent the pre-
ferred orientation of the spin along the z-axis. (b) Anisotropy barriers corresponding to
opposite signs of second order anisotropy, ±E(S2

x −S2
y ). The lines represent the hard (H) and

medium (M) axes which are separated by 90 degrees. A change in the sign of E corresponds
to a rotation of the transverse magnetic axes by 90 degrees. (c) Anisotropy barrier due to a
fourth order anisotropy, C(S4+ +S4−). In this case, there are two hard and two medium trans-
verse axes separated by 45 degrees. A change of the sign of C produces a 45 degree rotation
of the transverse magnetic axes.
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anisotropy plane between opposite orientations of the spin states along the
easy magnetic z-axis. Note that this barrier is isotropic in the x−y plane.
In this case, the tunnel splitting does not depend on the orientation of the
transverse field in the hard plane.

This situation changes in the presence of a transverse anisotropy.
Fig. 3b shows how the anisotropy barrier is modified by a second order
anisotropy term of the form E(S2

x − S2
y ). This term introduces one hard

and one medium axis in the hard plane (the x–y plane) that are separated
by 90 degrees. That is, for positive E the x is hard and y-axis is medium.
A change of the sign of E leads to a 90 degree rotation of these axes. In
this case, the tunnel splitting, �, depends on the azimuthal angle, φ, of the
applied transverse field, HT . A transverse magnetic field applied along the
medium axis produces a larger tunnel splitting than the same field applied
along the hard axis. This leads to an oscillatory dependence of � on φ

with 2 maxima and minima separated by 90 degrees (see Fig. 4a). A sec-
ond order anisotropy also introduces MQT selection rules. In the absence
of a transverse field, this term only allows MQT for resonances that are
even (i.e., k = 2i with i an integer).
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Fig. 4. Tunnel splitting of the ground state resonance, k = 0, as a function of the orienta-
tion (φ) of a transverse field of 0.3 T applied in the hard magnetic plane of a molecule for
(a) only second, and (b) only fourth order anisotropy terms. We have used D =548 mK, B =
1.17 mK, E = 10 mK and C = 0.022 mK in Eq. (1). The graphic clearly shows the 2-fold and
4-fold symmetries imposed by these different anisotropy terms.
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Fig. 3c shows the modification of the anisotropy barrier in the pres-
ence of a fourth order anisotropy term of the form C(S4+ + S4−). This
anisotropy produces two medium and two hard axes in the hard plane.
The separation between medium and hard axes is 45 degrees. Thus the
tunnel splitting will have a 4-fold pattern of oscillations as a function of
the angle of the transverse field, with maxima and minima spaced by a 45
degrees (see Fig. 4b). This term introduces a selection rule that allows tun-
neling transitions from the ground state for resonances that are a multi-
ple of 4 (k = 4i). In Fig. 4 we show the expected behavior of the tunnel
splitting of the ground state for resonance k = 0 versus the angle of the
applied transverse field, HT =0.3 T. The tunnel splitting is calculated using
the Hamiltonian of Eq. (1) with D=548 and B =1.17 mK and considering
only second order anisotropy (E =10 mK, Fig. 4a) and only fourth order
anisotropy (C =0.022 mK, Fig. 4b).

2.2. Disorder

Recent experimental results have shown that MQT in Mn12-ac is
modulated by off-diagonal terms that are generated by disorder. Disorder
allows for anisotropy terms that are lower order in the spin-operators than
those imposed by the average molecule site symmetry in SMM crystals.
Disorder can also lead to tilts of the easy axes from the crystallographic
easy axis.9,10,17−19,27,28 The phenomena that have been explained by dis-
order can be summarized as follows: (a) observation of MQT relaxation at
k-resonances that are not allowed by the quantum selection rules imposed
by the symmetry of the molecule and (b) non-exponential magnetic relax-
ation which suggests the existence of a distribution of tunnel splittings.

Two distinct models of disorder have been proposed. Chudnovsky and
Garanin14,15 proposed that random line dislocations in a crystal lead, via
magnetoelastic interactions, to a lower molecule symmetry and a broad
distribution of tunneling rates. Subsequent magnetic relaxation experi-
ments indeed showed the existence of a broad distribution of tunneling
rates and were analyzed in terms of this model.9,10 In contrast, Cornia
et al.16 suggested, based on detailed x-ray analysis, that variations in the
position of the two hydrogen-bonded acetic acid molecules surrounding
the Mn12-ac clusters lead to a discrete set of molecules with lower sym-
metry than tetragonal. More recent magnetic relaxation experiments18 and
high frequency EPR experiments19 have confirmed the latter model, show-
ing a 2-fold symmetry of the tunnel splitting as a function of the direction
of an external transverse field. Moreover, the observation of a distribution
of transverse fields in Mn12-BrAc28 and tilts in Mn12-ac27 suggests that
tilts of the easy axes of the molecules are responsible for the MQT relaxa-
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tion at odd-k resonances; in the case of Mn12-ac, these tilts are caused by
the solvent disorder. We summarize these models and their consequences
below.

2.2.1. Line Dislocations

Chudnovsky and Garanin14,15 considered a random distribution of
line dislocations with collinear axes to calculate a representative dis-
tribution of second order transverse anisotropies. They found: (a) the
corresponding distribution of tunnel splittings is broad on a logarithmic
scale; (b) the mode of the distribution is at E =0; and (c), for small con-
centrations of dislocations, most molecules are far from the dislocation
cores and the magnetic axes associated with the transverse anisotropy are
oriented randomly. The first point can explain the non-exponential relaxa-
tion found in Landau–Zener relaxation experiments carried out at several
MQT resonances, and at different longitudinal magnetic field sweep rates.9

Furthermore, experiments in which a Mn12-ac single crystal was treated
with rapid thermal changes could be explained in terms of the disloca-
tion model.10 Point (b) leads to a distribution of tunnel splittings, with
a very long tail towards small values of the tunnel splitting. In a more
recent experimental study, a Landau–Zener method that involved cross-
ing the same MQT resonance several times permitted the study of nearly
the whole distribution of tunnel splittings in a Mn12-ac single crystal at
a single resonance.17 The results obtained were compared to the distri-
bution function proposed by Chudnovsky and Garanin. A distribution of
second order anisotropies with mode at E = 0 was not able to explain
the relaxation data. More recently, both magnetic relaxation and high fre-
quency EPR experiments18,19 confirmed the discrete nature of the distri-
bution of transverse anisotropies and, moreover, the fact that the magnetic
axes of the transverse anisotropy is also discretely distributed along partic-
ular directions in the hard anisotropy plane of the molecules, contrary to
the random distribution expected from the dislocation model.

2.2.2. Solvent Disorder

From x-ray diffraction studies Cornia et al.16 showed that the four-
fold symmetry of Mn12-ac molecules is lowered by disorder of the acetic
acid molecules (two molecules with four possible sites). This gives rise to
a set of six different molecules (4 of them with E �= 0), with 7/8 or 88%
of molecules thus having a non-zero second order transverse anisotropy.
The fact that the second order anisotropy is generated by disorder in the
solvent molecules implies that both the abundance and magnitude of the



128 E. del Barco et al.

E for each isomer could depend on the synthesis process as well as on
the solvent losses that a particular crystal experienced prior to measure-
ment. From x-ray data, Cornia et al. calculated the E parameters for the
different isomers.16 These should be taken as estimates, since the data were
obtained from one crystal and the E-parameters were computed using an
empirical model. Nonetheless, this model represents an important step in
the understanding of MQT in Mn12-ac.

The relevant points of the solvent disorder model can be summarized
as follows: (a) there is a discrete set of E values in a sample. This means
that the distribution of tunnel splittings is a discrete function with peaks
at several E �= 0 values. (b) There are equal populations of isomers hav-
ing opposite signs of the second order anisotropy ±E. This means that the
medium and hard axes associated with each E value will be discretely dis-
tributed over the hard plane of the crystal with a separation of 90 degrees.
And (c) the hard axes of the second order anisotropy are rotated away
from the hard/medium axes corresponding to the fourth order anisotropy;
this rotation angle depends on the precise details of the solvent struc-
ture, and is ∼30 degrees for Mn12-ac. The first point has been confirmed
by high frequency EPR experiments by the observation of discrete peaks
in the absorption spectra that correspond to different discrete E values
and have the angular dependence expected from this model.19 The sec-
ond point has been confirmed through magnetic relaxation measurements
in which a portion of molecules having different signs of E have been
studied.17 The third point has been observed in EPR experiments and has
implications for the MQT discussed below. We note that both models sug-
gest the presence of tilts of the easy magnetic axes of the molecules. These
latter results, which have recently been confirmed via density functional
calculations.35 will be presented in detail in the experimental sections of
this paper.

2.3. The Effect of Disorder on MQT

In this section we will present model calculations of the dependence
of the tunnel splitting on the angle and the magnitude of an external
transverse field taking into account the presence of both second and
fourth order anisotropies. These terms must be considered on an equal
footing because they produce comparable tunnel splittings. This is seen
as follows. In perturbation theory, the splitting between levels m and
m′ associated with the second order anisotropy is approximately �E ∼
D(E/2D)(m

′−m)/2, while that associated with the fourth order anisotropy
is �C ∼D(C/2D)(m

′−m)/4. Thus, provided E2 ∼DC these are comparable
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in magnitude, independent of m and m′. This is the case for Mn12-ac, as
E ∼ 10−2 K and C ∼ 10−5 K and D ∼ 1 K. For this reason there is an
intricate interplay between these anisotropy terms that also occurs over a
broad range of transverse magnetic fields, and can thus be probed both in
EPR and MQT studies.

In Mn12-ac these 2nd and 4th order transverse anisotropy terms have
a different origin. The fourth order transverse anisotropy term is imposed
by the symmetry of the molecule, while the second order term is gener-
ated by a distribution of solvent micro-environments. However, there is
no reason to assume that these anisotropies are commensurate since they
come from different sources; one is associated with the ideal S4 symme-
try, the other is disorder induced and lowers this symmetry. Therefore, we
will consider a misalignment angle, β, between the magnetic axes associ-
ated with each transverse anisotropy term.

We write the transverse anisotropy part, HA, of the Hamiltonian (Eq.
(4)) as follows:

E(e1(S
2
x −S2

y )+ e2(Sx ·Sy +Sy ·Sx))+C(S4
+ +S4

−), (5)

where,

e1 = (cos2 β − sin2 β) e2 =2 cosβ sin β. (6)

This introduces an angle β between hard axes of the second and fourth
order anisotropy terms (see Fig. 5), the ‘E’ and ‘C’ terms respectively.
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Fig. 5. (Color on-line) 3-D representation of the anisotropy barriers corresponding to fourth
(upper graph) and second order (lower graph) anisotropies with an angle β between the cor-
responding hard axes.
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In the next subsections we will show the effect of having a misalign-
ment (β) on the symmetry of MQT and on the transverse field dependence
of the tunnel splitting for different orientations of the applied field. The
calculations have been done for parameters and conditions close to those
shown in the experimental sections of this article. In the following, we con-
sider in some detail the consequences of the solvent disorder model as this
can adequately explain many of our experimental observations.

As mentioned, one of the important consequences of the solvent dis-
order model is the fact that there must be equal populations of molecules
having opposite signs of E. This is because, on average, Mn12-ac crystals
have S4 or tetragonal site symmetry. Note that Fig. 5 represents the pic-
ture for the molecules having E > 0. Thus there will be molecules in the
sample with the magnetic axes of E rotated by 90 degrees with respect to
those represented in Fig. 5.

2.3.1. Commensurate Transverse Interactions

We consider the case of E>0 and β =0 in the presence of large trans-
verse field, as this field corresponds to that used in high frequency EPR
experiments (Sec. 4). Figure 6 shows the behavior of the ground state tun-
nel splitting, �10,−10 (resonance k = 0), versus the angle, φ, of an exter-
nal transverse field of 9 Tesla. The calculations have been done for β = 0,
D =548 mK, B =1.17 mK, C =0.022 mK and different values of E.

One interesting result in this figure is the observation of a fourfold
pattern of maxima imposed by the fourth order anisotropy. There are
four maxima in � that occur very close to the medium axes of C for
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small values of E. Only when E becomes very large do the maxima move
towards the medium axis of E to give, at high enough E-values (E �
20 mK), a twofold pattern of maxima. However, for the parameters esti-
mated with the solvent disorder model, E < 10 − 15 mK, the tunnel split-
ting is expected to show fourfold maxima in the direction of the medium
axes of C.
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Figure 7a shows the behavior of the ground state tunnel splitting,
�k=0, for the same conditions as Fig. 6, that is for β =0, but taking into
account the equal population of molecules having opposite signs of E. In
this case we have used E =Eav =±3 mK. The modulation of the fourfold
symmetry by E is opposite for different signs of E. However, the max-
ima are approximately at the same position, independent of the sign of
E. In Fig. 7b, we show the φ dependence of the average value of the
tunnel splitting (�E>0 +�E<0)/2. This average exhibits a symmetric four-
fold rotation pattern, the same as would be generated via only a fourth-
order anisotropy. Therefore, a measurement of the average tunnel splitting
of a crystal cannot distinguish between second and fourth order trans-
verse anisotropies if there are equal populations of molecules with oppo-
site signs of E.

The absolute difference between the tunnel splittings, corresponding
to opposite signs of E, is shown in Fig. 7c. In this case, β =0, the differ-
ence is maximal along the hard axes of C and vanishes along the medium
axes of C. Importantly, this provides a means of inferring the presence of
a second-order anisotropy through an appropriate experiment (this will be
shown below and in Sec. 4).

2.3.2. Incommensurate Transverse Interactions

We now consider the effect of a misalignment, β �= 0. Figure 8a
shows the behavior of the ground state tunnel splitting, �k=0, versus the
angle of the applied transverse field, HT = 9 T for E = 3 mK and differ-
ent values of β, from β = −45◦ to β = 45◦ in increments of 15 degrees.
Note that the black line, β = 0, is the result presented in Fig. 7a. A mis-
alignment β �= 0 generates an asymmetry between the maxima of the tun-
nel splitting. For example, for β =−45◦, the maximum at φ =45◦ is bigger
than the maximum at φ =135◦. Note that the hard axis of E (HE) for this
value of β is φ =−45◦ +n180◦ (with n an integer) while the medium axis
(ME) is along φ =45◦ +n180◦. In general, even though the ME axis is at
φ=β + (2n+1)90◦, the maxima of the tunnel splitting are in the direction of
the medium axes of C. The second order anisotropy introduces an asym-
metric modulation of the maxima and minima of the tunnel splittings that
depends on the value and the sign of E and on the misalignment angle β.

Figure 8b shows that the average value of the tunnel splitting is inde-
pendent of the angle of misalignment β and has four maxima. All the
results collapse in the same curve. So again a direct measurement of the
average value of � would not give information about the misalignment
between these anisotropies.
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Fig. 8. (Color on-line)(a) Ground state tunnel splitting, �k=0, versus the orientation of a
transverse field, HT =9 T, for E =+3 mK and different values of β. (b) Average value of the
tunnel splitting assuming both E-signs for each value of β; all of the curves lie on top of
each other. (c) Difference between the tunnel splitting values for E >0 and E <0 for different
β-values.

Figure 8c shows the difference between �E>0 and �E<0 for the same
parameters used in the previous calculation and different values of β from
−45◦ to 45◦. This difference has four maxima for all the angles β. How-
ever, the positions of the maxima are different for different β values. In
fact, the position of the maxima depends directly on the value of β as
φmax = β + n90◦. Consequently, a measurement of this difference would
not only provide the value of E but also give the angle of misalignment
between second and fourth order transverse anisotropies.
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We thus note that within the solvent disorder model the tunnel split-
ting of resonance k = 0 (the ground state degeneracy) at high transverse
field values will show a fourfold rotation pattern with respect the angle
of orientation of the applied field. This symmetry is modulated by the
second order anisotropy. However, equal populations of molecules with
opposite signs of E will give an average tunnel splitting with four maxima
that is indistinguishable from that corresponding to the fourth order trans-
verse anisotropy. The only way to determine the presence of second order
anisotropy is by examining the difference of the tunnel splittings corre-
sponding to molecules with opposite signs of E. The latter would give the
value of E and the misalignment angle between the second and fourth
order anisotropies. We will show how such measurements are possible via
two different techniques in the experimental part of this paper.

2.3.3. Incommensurate Transverse Interactions and MQT

Let us now consider the situation relevant to understanding the phys-
ics of MQT in magnetic studies in which much smaller tunnel splittings
are probed (∼10−6 K). We will analyze the behavior of the splitting for
resonance k = 6 (m = −10, m′ = 4) versus the angle, φ, of a small external
transverse field. The calculation has been done with the same D, B and C

parameters of the Hamiltonian as those of the previous calculations. We
have used |E | = Eav = 3 mK and a transverse magnetic field, HT = 0.35 T,
which corresponds to the situation studied in the dc Landau-Zener relax-
ation experiments that will be presented in Sec. 3.

The results are shown in Fig. 9. This situation is substantially
different from that of the previous case of resonance k = 0. The tunnel
splitting has a pattern that goes from two-fold maxima for β = ±45◦ to
four-fold maxima for β =0. Interestingly, the maxima are in the directions
of the medium axes of C independent of the direction of the medium axis
of E. For example, for β = −30◦ the two maxima of the tunnel splitting
are at φmax = 45◦,135◦ while the directions of the medium axis of E are
φME =β +90◦ =60◦,240◦. So, for some β-values, the tunnel splitting exhib-
its a twofold pattern of maxima with position determined by the fourth
order anisotropy. We have done these calculations for bigger values of E

(not shown in this paper) that indicate that the range of β-values around
β = 0 that exhibits fourfold symmetry is narrower the bigger the value of
E. However, for E-values smaller than 30 mK the maxima positions are
still determined by the fourth order anisotropy. This constitutes an unex-
pected result in a system with second and fourth order anisotropies that
is first pointed out in this work and has important consequences for the
interpretation of the experimental measurements that have been previously
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Fig. 9. (Color on-line) Ground state tunnel splitting, �k=6, versus the orientation of a trans-
verse field, HT =0.35 T, for E =+3 mK and different values of β.

published by some of the authors of this work,18,19 as will be explained in
the experimental Secs. 3 and 4.

We have calculated the average value of the tunnel splitting for differ-
ent angles β assuming an equal population of molecules with different
signs of E. The results are shown in Fig. 10. For all values of β there
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Fig. 10. (Color on-line) Average value of the ground state tunnel splitting, �k=6, for oppo-
site signs of E (|E|=3 mK), versus the orientation of a transverse field, HT =0.35 T, and for
different values of β.
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is clearly a fourfold rotation pattern of maxima of the average tunnel
splitting with symmetric maxima and minima along directions determined
by the fourth order anisotropy. Again, the only method to determine the
E value and the relative orientation between C and E, β, is to study a
subset of molecules having only one sign of E. In the latter case, depend-
ing on the value of β, there is a possibility that the molecules selected will
also show fourfold symmetry (e.g. if β ∼ 0). It would then not be possible
to conclude that such molecules have a second order anisotropy. As we
will show in Secs. 3 and 4 this is not the case experimentally. We will show
that a selection of a subset of molecules with one sign of E shows two-
fold symmetry which indicates that the angle β of misalignment is close
to β ∼±45◦ (specifically, β =−30◦).

2.3.4. Disorder and Berry Phase Effects

Quantum phase interference is one of the most important phenom-
ena observed in SMMs. Interference effects (Berry phase) in MQT were
first discussed by Loss36 and calculated for a nanomagnet with a biax-
ial anisotropy by Garg.37 This phenomenon is due to interference of the
quantum tunneling trajectories of the magnetization and has been clearly
observed in two SMMs to date.33,38 The first observation of the Berry
phase was by Wernsdorfer and Sessoli33 in the Fe8 SMM. Fe8 has both
second and fourth order transverse anisotropy. The observation of quan-
tum oscillations was done by applying a transverse field along the direc-
tion of the hard axis of the second order anisotropy (HE), which in this
case also corresponds to the direction of one of the hard axes of the
fourth order anisotropy term, β = 0. Figure 11 shows the dependence of
the tunnel splitting of resonance k = 0 on the external field applied along
φ = 0 (hard E anisotropy axis) and φ = 90◦ (medium E anisotropy axis).
We have used the parameters given in Ref. 33.

The field spacing between quantum tunneling oscillations of Fig. 11
can be described in terms of the anisotropy parameters D and E of the
Hamiltonian using a semiclassical approach,37

�H = 2kB

gµB

√
2E(E +D). (7)

This is ∼ 0.23 T for Fe8 which is smaller than the spacing resulting
from the exact diagonalization of the Hamiltonian including fourth order
transverse anisotropy, �H = 0.41 T, and was observed in reference.33 The
reason is that Eq. (7) only considers the presence of a second order anisot-
ropy.39 Note that the authors of Ref. 33 assumed commensurate aniso-
tropies to fit the data, thus the angle between the HE and HC1 axes is
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Fig. 11. (Color on-line) Fe8 ground state tunnel splitting, �k=0, versus the magnitude of a
transverse field applied along the hard (HE) and the medium (ME) anisotropy axes. The
parameters used in this calculation were taken from Ref. 33. The drawings above represent
the x − y plane projections of the anisotropy barrier for Fe8 in the presence of a transverse
field applied at different angles φ. The white lines show two hypothetical quantum tunneling
trajectories. When HT is applied along the hard anisotropy axis, φ = 0, the barrier remains
symmetric with respect to the field. In this case, the trajectories interfere. For transverse fields
not aligned with the hard axis, an asymmetric distortion of the barrier leads to non-equiva-
lent MQT trajectories, destroying the interference.

β = 0 (see Fig. 5). We also have used collinear second and fourth order
anisotropy terms in the calculated data shown in Fig. 11. So we can see
that the effect of having a fourth order anisotropy that is commensurate
with a second order anisotropy, β = 0, only modifies the pattern of oscil-
lations but not their structure and shape. Quantum tunneling oscillations
were also observed in [Mn12]−2 which has a dominant second order trans-
verse anisotropy.38 In this case, the spacing between oscillations was given
by Eq. 7.

Park and Garg40 calculated the quantum tunneling oscillations in a
system with only fourth order transverse anisotropy using the Hamiltonian
of Mn12-ac (Eq. (1)). Figure 12 shows calculations of the tunnel splitting
for different resonances by using Eq. (1) with D=556 mK, B =1.1 mK and
C =0.03 mK.
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along one of the hard axes of C (HC). The drawings above the figure show the distortion of
the anisotropy barrier due to a transverse field applied at different angles with respect to the
hard axes of the fourth order anisotropy. White lines represent different tunneling trajecto-
ries.

In order to take into account the effect of a misalignment, β �=0,
between second and fourth order anisotropies we have calculated the
dependence of the ground state tunnel splitting on the magnitude of an
external transverse field applied along different characteristic directions
in the hard plane of a molecule. For this, we have used β = −30◦, D =
548 mK, B =1.17 mK and C =0.022 mK and different values of E >0. For
clarity, this situation corresponds to having the following directions for the
characteristic transverse anisotropy axes: φHC = 0,90◦,180◦,270◦, φMC =
45◦,135◦,215◦,305◦, φHE =β +n180◦ =−30◦,150◦ and φME =60◦,240◦.

Examining the result for β = −30◦ in Fig. 9 (red curve) one can
see that the tunnel splitting has twofold symmetry with maxima at φ =
45◦,225◦ and minima at φ=135◦,315◦. These directions correspond to the
medium axes of C (MC1 and MC2). We have thus calculated the depen-
dence of the ground state tunnel splitting for resonances k =5,6 and 7 for
the field applied along MC1 and MC2. These are shown in Fig. 13a, b
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Fig. 13. Transverse field dependence of the ground state tunnel splitting of resonances k =5,
k = 6 and k = 7 for Mn12-ac, with E = 10 mK and E = 15 mK. The transverse field is applied
along the φ = 45◦ and φ = 135◦ directions, which correspond to the positions of the maxima
and minima of � for a misalignment angle β =−30◦.

and c respectively, for a transverse field applied along φ=45◦ (tunnel split-
ting maximum, MC1 axis) and φ = 135◦ (tunnel splitting minimum, MC2
axis) using E = 10 mK (thin lines) and E = 15 mK (thick lines). Figure 13
shows how the minimum in the tunnel splitting moves to higher fields and
becomes deeper as E increases.
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The results show a very different structure and shape of the Berry
phase oscillations as compared to the case when both anisotropies are
commensurate. Note that the orientations we used for the applied trans-
verse field correspond to the medium axes of the fourth order anisotropy
where one does not expect to have Berry phase oscillations. Moreover,
these two orientations, φ = 45◦ and φ = 135◦, do not coincide with the
hard axis of the second order anisotropy, which for β = −30◦ is along
φ =−30◦ +n180◦.

In order to have a more complete picture of the effect of second
and fourth anisotropies with incommensurate axes on the Berry phase
phenomena we have calculated the dependence of the ground state tun-
nel splitting of resonance k = 7 on the magnitude of a transverse field
applied at different angles, from φ = 45◦ (which correspond to one of the
medium axes of C) to φ = 225◦ (which correspond to the opposite ori-
entation of the field along the same hard C-axis). The results are shown
in a color contour plot in Fig. 14. The first thing to point out is that
the tunnel splitting still has zeros in this situation. However, the most sig-
nificant fact is that these zeros do not appear at an angle characteristic
of the transverse anisotropies. Moreover, the structure, shape and position
of the zeros are completely independent of the Berry phase correspond-
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Fig. 14. (Color on-line) Color contour plot of the transverse field dependence of the ground
state tunnel splitting of resonance k = 7 for different angles φ for a misalignment, β =−30◦,
between the hard anisotropy axes of E and C. The vertical lines represent the orientations of
hard and medium axes of the second and fourth order anisotropy terms. This misalignment
generates a new and interesting pattern of Berry phase zeros that does not correspond to any
of the anisotropies separately.
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Fig. 15. (Color on-line) Projection of the anisotropy barrier onto the x −y plane for second
(right-upper graphic) and fourth (left-upper graphic) order transverse anisotropy terms. The
addition of both anisotropies leads to an asymmetric barrier (lower graphic) that makes it
difficult to see the orientations of a transverse field that would generate equivalent quantum
tunneling trajectories and, therefore, Berry phase interference phenomena.

ing to each anisotropy term separately. Note that the calculations shown
in Fig. 13 correspond to transverse fields applied along φ = 45◦ and 135◦
which correspond to the directions of the maximum and minimum val-
ues of the tunnel splitting of Fig. 9, respectively. In the case of φ = 135◦
the tunnel splitting is close to one of the zeros (φ ∼ 125◦ and HT ∼ 0.4
T in Fig. 14) but far from all the others, explaining the observation of
only one incomplete oscillation in Fig. 13a. This new and unusual struc-
ture of the Berry phase zeros can be better understood by looking at the
graphic representation of the anisotropy barrier of Fig. 15. The addition
of second (right-upper illustration in Fig. 15) and fourth order (left-upper)
transverse anisotropies in a SMM leads to an asymmetric barrier (center-
lower) where symmetry does not permit a direct identification of the field
that generates equivalent quantum tunneling trajectories that can interfere.

From the results, we can conclude that the combination of incom-
mensurate transverse anisotropy terms of different order in the spin-oper-
ators can lead to an interesting situation in which the resulting magnetic
response does not depend in any simply way on the form of either anisot-
ropy term separately. The parameters used in the above simulation were
chosen because they are within the range of values that can explain the
experimental results presented in Secs. 3 and 4.

3. MAGNETIC RELAXATION EXPERIMENTS

We have carried out magnetic relaxation measurements in a single
crystal of deuterated Mn12-ac in the pure quantum regime (T = 0.6 K)
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in which relaxation is by MQT without thermal activation over the
anisotropy barrier.11 Deuterated crystals were studied because the purity
of the chemicals used in the synthesis leads to very high quality crystals.41

We have used a high sensitivity micro-Hall effect magnetometer42 to
measure the magnetic response of a Mn12-ac single crystal of ∼100 micro-
meter size and needle shape. We measure the longitudinal component of
the magnetization of the sample (z-component) by placing the crystal with
one of its faces parallel to the sensor plane and one end just over the cross
point of the micro-Hall sensor. The magnetometer was placed inside a low
temperature He3 system. A superconducting vector-field magnet was used
to apply high magnetic fields at arbitrary directions with respect to the
crystal axis.

3.1. Landau–Zener Method

The Landau–Zener (LZ) method has been used to study quantum
tunnel splittings in SMMs33 and has become a powerful tool to check for
distributions of dipolar and nuclear interactions,38 molecular micro-envi-
ronments9,10,17,18 or internal transverse magnetic fields28 in these mate-
rials. The method consists in crossing a MQT resonance by sweeping
the longitudinal magnetic field at a constant rate, α = dH/dt , and mea-
suring the fractional change of the magnetization in the process. The
anti-crossing of the spin levels m and m′ of resonance k = m + m′ is
shown in the inset of Fig. 16. For an ideal system of non-interacting
and monodisperse SMMs, and for low enough temperatures (where ther-
mal relaxation is negligible), the normalized change of magnetization,
(Mbefore − Mafter)/(Mbefore − Meq ), is related to the probability for a mol-
ecule to reverse its magnetization by quantum tunneling. The bigger the
MQT probability the larger the magnetization change will be. This MQT
probability is related to the tunnel splitting, �, by the LZ formula,43

PLZ =1− exp

(
−π�2

2ν0

1
α

)
, (8)

where ν0 =gµB(2S −k) and ν0α is the energy sweep rate. RLZ =1−PLZ is
the probability for a molecule to remain in the metastable state |m′〉 after
crossing the resonance.

It is important to note that this relation is only valid if the inter-
nal energy sweep rate a single molecule experiences is proportional to the
external sweep rate of the magnetic field. This is not satisfied if there
are internal dipolar or nuclear fields. In fact, it has been shown in Fe38

8
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Fig. 16. Landau–Zener multi-crossing experiment in a Mn12-ac single crystal measured at
0.6 K by sweeping the longitudinal magnetic field at a constant rate, α = 6.6 × 10−3 T/s, mul-
tiple times across the k = 7 resonance. The inset shows a representation of the energy levels,
m and m′, at the anti-crossing point.

and Mn12-ac17 that changing dipolar fields lead to deviations from the
LZ formula. In order to avoid these effects the external sweep rate must
be fast enough to have small magnetization change (i.e. small changes of
dipolar fields) in the crossing process. The critical lower value of the mag-
netic field sweep rate, αc, that is needed to avoid this situation has been
determined to be 10−3 T/s for Mn12-ac.17 Due to this, all the experiments
presented in this section have been conducted with α >αc.

3.2. Multi-Crossing Landau–Zener Measurements

When there is a distribution of quantum splittings in the sample
each molecule has a different MQT probability and the relaxation of the
magnetization should reflect this fact. In this case, the MQT probability
depends on the distribution of tunnel splittings of the molecules that are
in the metastable well before crossing a resonance. After a crossing of
a resonance, those molecules with the largest tunnel splitting values and,
consequently, the highest MQT probability will represent the maximum
contribution to the fractional change of the magnetization. Correspond-
ingly, those molecules with smaller tunnel splitting values will remain in
the metastable well. Due to this, the LZ relaxation method can be used
to determine the distribution of tunnel splittings in a sample, and to select
different parts of the distribution for independent study, as we will show
in subsection 3.3.
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In order to extract the complete distribution of tunnel splittings in
Mn12-ac we have used a modification of the LZ method that consists
of crossing a resonance multiple times, both for increasing and decreas-
ing fields. As we have stated previously, molecules in the metastable well
having the largest tunnel splitting values are most likely to relax in any
given crossing of a resonance. Once a molecule has relaxed, it will no
longer exhibit dynamics in subsequent crossings of the same resonance.
Thus, only those molecules with the largest probability of tunneling, and
which did not already tunnel, can contribute to the relaxation during sub-
sequent crossings of the resonance. The repetition of this procedure many
times enables a determination of the distribution of tunnel splittings in
the sample over several orders of magnitude. We show an example of this
multi-crossing LZ procedure for resonance k = 7 in Fig. 16.

In a multi-crossing LZ measurement the probability to remain in the
metastable well after crossing a resonance n-times is given by,

RLZn = exp

(
−π�2

2ν0

1
αeff

)
, (9)

where αeff = α/n. If this expression describes the physics, then relaxa-
tion curves recorded at different sweep rates should scale when plotted
as a function of the effective sweep rate. This can be clearly observed in
Fig. 17, where we show LZ multi-crossing relaxation measurements of res-
onances k =6,7 and 8, carried out at different sweep rates α >αc (3.33 ×
10−3 to 1.33 × 10−2 T/s). Small differences in the results were observed in
three different crystals that were synthesized in the same way. These results
clearly show that the MQT relaxation rate is not exponential and indi-
cate the presence of a distribution of tunnel splittings within the sample.
These results confirm previous experimental observations of non exponen-
tial relaxation in Mn12-ac.6,8−10 Moreover, the large fraction of the relaxa-
tion that we are able to observe with this method gives direct information
on the width of the distribution of tunnel splittings.

We have assumed a log-normal distribution of tunnel splittings to
explain our observations. We take the form,

f (x)=Aexp

(
− (x −xc)

2

σ 2

)
, (10)

where x = log � and xc = log �c, �c and σ represent the center and the
width of the distribution, respectively. The fits of the relaxation curves that
are shown in Fig. 17 (solid lines) have been obtained by using,
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R(α,n)=
∫ ∞

−∞
Rlz(α,�,n)f (log �)d log �, (11)

with xc and σ as free parameters. The resulting fits are in excellent accord
with the experiments. The resultant distribution functions for resonances
k=6,7 and 8 are shown in Fig. 18. The center of the distribution increases
with the resonance number, k, while the width remains almost constant for
different resonances, being somewhat narrower for resonance k =8.
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In Sec. 2.2 we have discussed the two models that have been pro-
posed to explain the presence of a broad distribution of tunnel splittings
in terms of disorder. Before analyzing our results, note that a second order
transverse anisotropy allows transitions for resonances 2i, while a fourth
order anisotropy, which is imposed by the symmetry of the molecules, only
allows MQT relaxation for resonance numbers which are a multiple of 4,
4i. Thus, a comparison between relaxation curves recorded at resonances
k=6 and 8 should give us information about the origin of the tunnel split-
tings in this material. The relation between the tunnel splitting and the
second order anisotropy is given by the next formula which follows from
perturbation theory:32

ln(�k/gk)/ξk = ln
(

E

2D

)
, (12)

where gk and ξk depend on k, S and D (see Ref. 32) and were given in
Section 2.1. Through this expression we can infer the distribution of sec-
ond order anisotropy parameters, f (ln(E/2D)), by taking the log-normal
distributions used to fit the relaxation curves of resonances k =6 and k =8.
The results are shown in Fig. 19. The fact that both distributions do not
scale when plotted as a function of ln(E/2D) indicates that second order
anisotropy can not be the only origin of tunnel splittings within the sample.

The distribution function of the second order anisotropy parameter
predicted by the line dislocations model is given by Ref. 15,

fL(x)∼= 1

2
√

πẼc

exp

(
x − e2x

(2Ẽc̃)
2

)
, (13)
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Fig. 19. Distribution of the second order anisotropy parameter inferred from the log-normal
distribution functions of resonances k =6 and 8 of Fig. 18 using the expression of Eq. (11).
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where x ≡ ln Ẽ with Ẽ = E/2D. Ẽc̃ is the width of the distribution of
the anisotropy parameter Ẽ. Ẽc̃ depends on the geometry of the crystal
and on the concentration of dislocations per unit cell, c. Note that the
mean value and width of the distribution given by this expression are not
independent variables. By using this distribution with Eq. (11) we have fit
the relaxation curve recorded at resonance k =6. The only free parameter
in the fit is Ẽc̃. The result is shown in Fig. 20 (thin line) where the log-
normal distribution extracted from our previous fit of the same relaxation
curve has been included for comparison (thick line). We have chosen the
mean value to be at the same position as that of the log-normal distribu-
tion. The value of Ẽc̃ used to fit the data corresponds to a concentration
of dislocations per unit cell of c ∼ 10−4. Clearly, the width of this distri-
bution is many orders of magnitude bigger than the log-normal distribu-
tion used to fit our data. This is due to the fact that the distribution of
E predicted from the line dislocations model has a most probable value at
E =0, which explains the long tail observed for low tunnel splitting values.
Consequently, line dislocations would produce a much broader relaxation
curve than that observed in the experiments. Our data indicate that a dis-
tribution of second order anisotropy with a non zero mode is needed to
explain the MQT relaxation in Mn12-ac.

We want to note that we were able to fit the relaxation curves
by using a discrete multi-peak distribution of E values similar to that
expected from the solvent disorder model.16 However, it was necessary to
include a Gaussian width to each peak of the distribution in order to fit

-14 -12 -10 -8 -6          -4
0.0

0.2

0.4

0.6

0.8

1.0

k = 6

f(
∆)

log(∆) (K)

  A
  B

Fig. 20. Tunnel splitting distribution of resonance k = 6 expected from the line-dislocation
model (thin line) compared with the log-normal distribution that fits the experimental data
(thick line).
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the data.17 The values of the peak centers of this distribution for reso-
nance k = 6 are xc,1 = −7.19(−7.0525), xc,2 = −8.55(−8.1749), and xc,3 =
−6.60(−6.7995), (the values in parenthesis are extracted from Ref. 16).
The width of each peak is Wi = xc,i /50 and the height of each peak was
taken to be proportional to the population of the corresponding isomer
given in Ref. 16.

To conclude this subsection, we have shown that a multi-crossing LZ
method allows the determination of the complete distribution of tunnel
splittings for several resonances in SMMs. Our results suggest that a dis-
tribution of second order transverse anisotropies with a non zero mode
is necessary to explain the experimental data. The solvent disorder model
provides such a source and a discrete multi-peak distribution of tunnel
splittings can be used to fit our data. However, an additional source of
disorder (e.g. line-dislocations or point defects) that introduces a small
broadening of the these peaks is also necessary to model the experimen-
tal data.

3.3. MQT Symmetry Measurements

In this subsection, we will present LZ relaxation experiments car-
ried out in the pure quantum regime (T = 0.6 K). In order to check the
MQT symmetry imposed by the transverse terms of the Hamiltonian we
have studied the LZ relaxation of the magnetization by sweeping an exter-
nal longitudinal field, HL, at a constant rate, α, across a resonance k

in the presence of an external transverse field, HT , applied at arbitrary
directions, φ, with respect to the crystallographic axes of a Mn12-ac single
crystal. As we have shown in Section 2 (i.e. see Fig. 4), MQT has an oscil-
latory response as a function of the orientation of a transverse field. This
leads to maxima and minima in the MQT relaxation rates whose positions
and symmetry depend on the transverse anisotropy term that generates the
tunnel splittings. To recall, a fourth order anisotropy term would generate
a fourfold rotation pattern in the MQT probability with maxima spaced
by 90 degrees, while a twofold rotation pattern with spacing between max-
ima of 180 degrees is expected from a second order anisotropy term in the
Hamiltonian. When incommensurate transverse anisotropy terms of differ-
ent order are present, the symmetry of the MQT relaxation rates depends
on the relative orientation between the anisotropy axes, as discussed in
Sec. 2.2.

A single crystal of Mn12-ac was placed over a high sensitivity micro-
Hall magnetometer as described in the first paragraph of this section.
However, for these studies it is very important to know the exact ori-
entation of the crystallographic axes with respect to the direction of the
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Fig. 21. Schematic representation of the orientation of the c-axis (easy axis) of a crystal with
respect to the axes of the applied external magnetic field (x, y, z). The misalignment is deter-
mined by θ and σ . The misalignment between the transverse magnetic axes of the Mn12-ac
molecules, and one of the faces of the crystal (ϕ ∼12◦), is also shown.

external magnetic field. Figure 21 shows a sketch of the orientation of
the c-axis of the crystal with respect to the external magnetic field. Note
that, in Mn12-ac, the c-axis corresponds to the easy magnetic axis of the
molecules. However, there is a misalignment of ϕ ∼12◦ between the trans-
verse magnetic axes (imposed by the fourth order anisotropy of the mole-
cules) and the crystallographic axes. This is also shown in Fig. 21.

During the manual alignment of the crystal one of its faces was
placed coplanar with the micro-Hall sensor plane with the help of a
microscope. However, there exists an uncertainty of about ±5 degrees in
this orientation. This misalignment is represented by the angles θ and σ in
Fig. 21 and can be determined experimentally through the magnetic mea-
surements described below. The main implication of this misalignment is
that there is a transverse field component due to the high longitudinal field
applied along the z-axis that depends on the angles θ , σ and φ. The latter
is the angle of application of the external transverse field with respect to
the x-axis. Due to this, the total transverse field felt by the molecules in
the presence of a constant transverse field, HT, applied along φ and with
a longitudinal field, HL =Hz cos θ ∼Hz(cos θ ∼ 1 for θ small) is given by,

H 2 ∼ [HT cos(φ −σ)−HL sin θ ]2 + [HT sin(φ −σ)]2. (14)

Thus, the transverse field felt by the molecules will have a minimum
value for φ =σ and a maximum for φ =σ +180◦ with HL >0. The oppo-
site situation would be found for HL < 0. As we will show, once the mis-
alignment angles are known, an algorithm can be used to correct the
applied fields in order to have a constant transverse field during the mea-
surements, independent of the angle of application of the external fields.

In our first experiment we have studied the MQT relaxation rates of
several resonances in the presence of a constant transverse field applied at
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arbitrary directions with respect to the crystallographic axes. The experi-
ment was done as follows: We start with the initial magnetization of the
sample equal to positive saturation, Minitial =+Ms, by applying a high lon-
gitudinal magnetic field, HL =6 T. For this initial situation, all of the mol-
ecules of the crystal were in the m=+10 level in one of the energy wells.
Then we turn on a transverse magnetic field, HT = 0.4 T, applied along a
direction, φ, and sweep the longitudinal field at a constant rate, α=−6.6×
10−3T/s to HL = −6T . We measured the magnetization change in sev-
eral resonances k and determined the MQT probability, PLZ = (Mbefore −
Mafter)/(Mbefore −Meq), where, in this case, Meq =−Ms. Note here that all
the molecules within the crystal contribute to the relaxation. We repeated
this procedure for different angles φ from 0 to 360 degrees.

The behavior of the measured MQT probability as a function of φ is
shown in Fig. 22 for resonances k = 5 and k = 6. The results clearly show
fourfold maxima in the tunneling probability spaced by 90 degrees (φmax =
60◦;150◦;240◦ and 330◦) for both resonances. Note that k = 5 and 6 are
the first observed resonances and ∼35% of the magnetization relaxes. This
means that molecules that contribute to this relaxation are mainly those
with the biggest tunnel splitting values within the distribution.

There is also a one-fold contribution that is represented by a contin-
uous line in Fig. 22 with the result for resonance k = 6.44 This oscilla-
tion is due to the misalignment of the c-axis of the crystal with respect to
the applied magnetic field. This misalignment is represented by the angles
θ and σ and can be determined through magnetic measurements. From
the results shown in Fig. 22 we find σ = 80◦ (where we observe the max-
imum value of the one-fold contribution). To obtain θ , we measured the
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Fig. 22. Measured MQT relaxation probability for resonances k =6 and k =7, as a function
of the orientation of the applied transverse field, HT = 0.4 T, relative to one of the faces of
the crystal. The measurements where carried out starting from saturation (all the molecules
within the crystal contributed to the relaxation).
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behavior of the MQT probability of resonance k = 6 for different mag-
nitudes of the transverse field from −0.4 to 0.4 T applied along φ = σ .
The transverse field value for which the probability is minimum (null real
transverse field) gives the angle of misalignment θ through HT(Pmin) =
HLsin θ , where HLsin θ is the transverse projection of the longitudinal
field. The value extracted for the misalignment is θ = 0.3◦. The effect of
this misalignment on the transverse field is larger the greater the reso-
nance number. We do not show the results for higher resonances, such as
k =8, because the fourfold symmetry is almost unobservable due to the
high one-fold contribution of the misalignment.

In order to measure the response of the MQT probability versus the
angle φ in other parts of the tunnel splitting distribution we have con-
ducted LZ relaxation experiments in the following manner. We select a
small fraction of molecules with the smallest tunnel splittings of the distri-
bution, in contrast to the biggest values that were analyzed in the previous
experiments. The measurement method is presented in Fig. 23. We start
with M = −Ms by applying a high negative longitudinal magnetic field,
HL = −5 T. Then we sweep the longitudinal field at a constant rate, α =
6.6×10−3 T/s, up to HL =+4.2 T (just after crossing resonance k=8) and
sweep it back to zero, crossing again resonances k =8,7,6, . . . The whole
selection process is done in the absence of a transverse field. After that,
the final magnetization of the sample is M =0.4Ms. This means that 70%
of the molecules have relaxed to the stable well or, in other words, only
30% of the molecules have remained in the metastable well and will con-
tribute to further relaxation. The latter are those molecules with the small-
est tunnel splitting values within the distribution. After this, we turn on a
transverse field, HT = 0.4 T, applied at an arbitrary angle, φ, with respect
to the crystallographic axes of the sample. Then we sweep the longitudinal
field to a high positive value, crossing the resonances again. We repeated
this procedure for different orientations of the transverse field from 0 to
360 degrees.

The MQT probability of resonance k = 6 is shown as a function of
φ in Fig. 24. The results show the same fourfold symmetry pattern with
maxima placed at the same positions as those in the experiment shown
in Fig. 22. As these two experiments study the relaxation of two different
parts of the distribution of tunnel splittings (low and high ends of the dis-
tribution), we can conclude that the fourfold symmetry of MQT is a prop-
erty of a significant fraction of the molecules within the crystal.

In principle, the four fourfold rotation pattern is consistent with a
fourth order transverse anisotropy term, C(S4+ + S4−), in the spin-Hamil-
tonian (see Fig. 4b). For positive C, the four maxima generated by this
term should be at φmax = 45◦,135◦,225◦ and 315◦. There is a difference
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Fig. 23. (Color on-line) Selection of 30% of the molecules with the smallest tunnel splittings
within the distribution. Starting at M =−Ms, the longitudinal field is swept from 0 to 4.2 T,
then back to 0 in the absence of a transverse field (black line). After this procedure, only
those molecules that have not relaxed (30%) remain in the metastable well. A transverse field
of 0.4 T is then applied at an angle φ, and the longitudinal field is swept again to a high pos-
itive value. The process is repeated for different φ angles (lines with different colors).
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Fig. 24. MQT probability for resonance k = 7 versus the orientation of the applied trans-
verse field, HT =0.4 T, relative to one of the faces of the crystal. A previous selection process
was used to study only 30% of the molecules with the smallest tunnel splitting values within
the distribution. The results were extracted from longitudinal magnetic field relaxation curves
recorded at a constant sweep rate, α =6.6×10−3 T/s.
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of 15 degrees between these values and those observed in our experiments,
φmax =60◦,150◦,240◦ and 330◦. This is due to the misalignment, ϕ =12◦,
between the hard anisotropy axis of the molecules and one of the faces
of the crystal, which we use as the origin of our φ rotation. There still
is a difference of 3 degrees that is within the accuracy with which we ori-
ent the crystal (±5 degrees). However, the value of C ∼3×10−5 K cannot
explain the difference between the maximal and minimal magnitudes of
the measured MQT probability. The observed normalized changes, (Pmax −
Pmin)/Pmax, in the experiment with 100% of the molecules contributing to
the relaxation are ∼0.9 for k=5 and ∼0.6 for k=6 (see Fig. 22). Whereas,
with this value of C, we expect this change to be within the noise of the
measurement.

In order to determine whether this symmetry is intrinsic to the
Mn12-ac molecules and its origin, we have carried out experiments designed
to select different parts of the distribution by using transverse fields in
the selection process. Note that, in the previous experiment, we selected
the SMMs with the smallest tunnel splittings in the absence of transverse
fields. Now, we use a selection transverse field (STF), HSTF, applied at an
angle, φSTF, during the preparation of the initial state of the system. In
this case, those molecules with the medium anisotropy axis aligned with
the STF have larger tunnel splitting values (larger relaxation probability)
and can be selected for further study.

The measurements with this selection process are shown in Fig. 25.
First we apply a high longitudinal field to saturate the magnetization of
the system and sweep the field back to zero, having at the end a magne-
tization, M = −Ms. Then we turn on a selection transverse field, HSTF =
0.6 T, applied at the angle φSTF = 60◦, where one of the four maxima
were observed in the experiments carried out with the whole sample, and
we sweep the longitudinal field at a constant rate to a positive value and
sweep back to zero. The value of this field is chosen depending on how
much relaxation we want in the selection process: for a selection of 50%
of the biggest splittings, we sweep the field up to 3.2 T allowing the system
to relax in resonances k = 5 and 6; for a selection of the 10% of the big-
gest splittings, we only allow the system to relax in resonance k = 5. The
final states of the magnetization are M = 0 and M =−0.8Ms, respectively.
After the selection process we sweep the longitudinal field down to −5.5 T
at a constant rate, α =6.6×10−3 T/s, in the presence of a transverse field,
HT =0.3 T, applied at difference angles φ with respect to one of the faces
of the crystal. We repeated this procedure for different angles φ from 0 to
360 degrees. In a separate experiment, we repeated the selection of 50% of
the molecules with the largest splittings within the distribution by applying
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Fig. 25. (Color on-line) Selection processes carried out by sweeping a positive longitudinal
field across resonances k =5 and k =6, in the presence of a selection transverse field, HSTF =
0.6 T, applied at a selection angle φSTF = 60◦. Both 10% and 50% of the molecules with the
largest tunnel splitting values were selected in separate processes for this experiment. These
populations were then studied on the negative side of the longitudinal field hysteresis curve,
in the presence of a transverse field, HT = 0.3T, applied at different angles φ from 0 to 360
degrees.

a selection transverse field, HSTF, along the angle in which a complemen-
tary maximum was observed, φSTF =150◦.

The results are shown in Fig. 26. In all selections the MQT probabil-
ity shows a twofold rotation pattern with maxima spaced by 180 degrees.
For the selection in which HSTF is applied along φSTF =60◦, the two max-
ima are at φmax,1 = 60◦ and φmax,2 = 240◦, for both fractions of mole-
cules selected (10% and 50%). Moreover, when the selection field is applied
along the position of a complementary fourfold maximum, φSTF = 150◦,
the twofold maxima, φmax,1 =150◦ and φmax,2 =330◦, are displaced by 90
degrees with respect to the previous case.

The observation of a twofold rotation pattern in the MQT prob-
ability is clear evidence of a second order transverse anisotropy lower
than that imposed by the site symmetry of the molecule (four-fold). This
is in excellent agreement with the solvent disorder model proposed by
Cornia et al.16 where there is an expectation of equal populations of mol-
ecules with opposite signs of the second order anisotropy. A considerable
increase of the change of probability between maxima and minima is also
observed as the fraction of molecules with highest tunnel splitting values
becomes smaller, indicating the fact that the molecules with largest split-
ting values have bigger values of the second order anisotropy.

In Sec. 2, we stated that incommensurate anisotropy terms would
considerably modify the magnetic response of the molecules to the orienta-
tion of a transverse magnetic field, depending on the angle of misalignment,
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Fig. 26. Behavior of the MQT probability versus the orientation of a transverse field, HT =
0.3 T. The molecules which relax were previously selected from the tunnel splitting distribu-
tion using a selection transverse field, HSTF, applied along the directions where the two com-
plementary maxima where observed in the experiments on the whole sample (Fig. 24), i.e.
φSTF = 60◦ (upper figure, for both 10% and 50% of the largest splittings in the distribution),
and φSTF =150◦(lower figure, for 50% of the largest splittings).

β, between both anisotropies (see Eqs. (5) and (6) and Fig. 5). The sym-
metry of the MQT probability expected from this model depends on
several parameters like the resonance number, k, and/or the misalign-
ment angle, β. It turns out from this model that for |E| < 30 mK (big-
ger than the maximum E value expected from the solvent disorder model)
the symmetry of the MQT probability mainly depends on the angle of
misalignment, β, going from fourfold for small β values to twofold for big
β values. Taking a given E value, the transition between fourfold to two-
fold maxima patterns as a function of β depends on the resonance num-
ber k. For example, for resonance k = 0 (Fig. 8a), the fourfold maxima
pattern is observed for every misalignment value, where a slight twofold
modulation is due to the second order anisotropy. For bigger resonances
(i.e. k = 6), the transition between these two MQT probability symmetries
is cleaner (see Fig. 9). For misalignment angles, |β|<20◦, the MQT proba-
bility shows fourfold symmetry modulated by the second order anisotropy.
However, for angles |β|> 20◦, the MQT probability symmetry is twofold.
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Fig. 27. Left: Experimentally determined angle dependence of the MQT probability for reso-
nance k=6 for the two complementary directions of the transverse selection field. The one-fold
contribution arising from the misalignment angles θ and σ has been corrected for clarity. Right:
Calculated tunnel splitting for resonance k = 6, �k=6, for β =−30◦ and opposite signs of E;
the calculations assume the same values of HT,D,E and C as those in Fig. 9.

Consequently, the observation of twofold symmetry in our experiments
shows that the angle of misalignment between both anisotropy terms is
greater than 20 degrees. In Sec. 4, we will present high frequency EPR
experiments that show that the angle of this misalignment is β =−30◦. In
Fig. 27 we show a comparison between the experimental observation of
resonance k=6 for both transverse selection fields with 50% of the biggest
splittings (left polar plot) and the calculated splitting (right polar plot)
corresponding to resonance k = 6 and β = −30◦ with opposite signs of
|E|=3 mK. The difference of ∼15 degrees between the experimental results
and the calculations is also shown in this figure. As we said before, this
difference is due to the fact that we measure the angle φ with respect to
one of the faces of the crystal while the transverse magnetic axes of the
molecules are rotated from the faces of the crystal by ∼12 degrees.

An estimation of the values of E needed to explain the experimen-
tal observations of the oscillation of the MQT probability presented in
this subsection are: (a) E ∼ 0.5 mK for the result corresponding to the
30% of the smallest splittings of the distribution (Fig. 24), (b) E ∼2.5 mK
for the result with the whole distribution (Fig. 22, upper curve) and with
50% of the biggest splitting in the selection with HSTF =60◦ and 50◦ (Fig.
26), and (c) E ∼ 10 mK for the result corresponding to 10% of the big-
gest splittings of the distribution (Fig. 26, solid circles). These values are
in excellent agreement with the results obtained by high frequency EPR
experiments (presented in Sec. 4) and by recent density functional theory
calculations.35 However, they are slightly larger than the values initially
proposed in Ref. 16.
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3.4. Berry Phase Measurements

The ability to select a subset of molecules with a narrow distribution
of tunnel splittings and, for example, different signs of the second order
transverse anisotropy allows us to study the behavior of the MQT relaxa-
tion as a function of a transverse field. As we anticipated in Sec. 2, quan-
tum phase interference (Berry phase) would lead to zeros of the tunnel
splittings (i.e. absence of magnetic relaxation) for several values of a trans-
verse field applied along the hard anisotropy axis of the molecules, and we
discussed how the pattern of the oscillations can be modified by the pres-
ence of two incommensurate transverse anisotropies.

For these experiments, we have used the same preparations of the ini-
tial states of the system as those shown in Fig. 25. These initial states cor-
respond to a selection of 50% and 10% of the molecules having the larger
tunnel splitting values within the distribution. The selection of both ini-
tial states is done by applying a selection transverse field, HSTF = 0.6 T,
at an angle φSTF = 60◦. As we have shown, this procedure mainly selects
those molecules with one E-sign, as is observed in the twofold transverse
field rotation pattern of the MQT probability of Fig. 26, with maxima at
φmax = 60◦, 240◦ and minima at φmax = 150◦,330◦. To study the behav-
ior of the MQT probability as a function of the magnitude of the applied
transverse field we apply a transverse field, HT , along the direction of the
first maximum, φ =60◦, after the selection process. We then sweep the lon-
gitudinal field at a constant rate to −5.5 T, measuring the change of mag-
netization in each resonance crossing. We follow the same procedure for
different values of the transverse field from HT =0 to 0.7 T. Moreover, we
repeated the same measurement by applying the transverse field along the
direction of the first minimum φ =150◦.45 The results of the MQT proba-
bility for resonances k =5, 6 and 7 are shown in Fig. 28. In the left graph
of the figure are the results obtained with 50% of the molecules with the
largest tunnel splitting values. In the right graph we show the results for
10% of the biggest splittings. The measurements with the transverse field
applied along the first of the twofold maxima, φ =60◦, are represented by
open symbols, while the solid symbols correspond to measurements with
the transverse field applied along the first of the minima, φ =150◦.

There are several important aspects to this figure. (a) There is vertical
shift between the curves corresponding to different directions of applica-
tion of the transverse field. The shift is bigger in the case of the selection
of the 10% of the biggest splittings within the distribution. This is con-
sistent with the observations of Fig. 26, and supports the assumption of
a distribution in the magnitude of the second order anisotropy. (b) MQT
probability increases exponentially with the magnitude of the transverse
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Fig. 28. MQT probability for resonances k = 5,6 and 7 as a function of the magnitude of a
transverse field applied along φ = 60◦ (open symbols) and φ = 150◦ (solid symbols). The ini-
tial state of the sample was prepared by selection of 50% (left) and 10% (right) of the mol-
ecules with the largest tunnel splitting values, using a selection transverse field, HSTF =0.6 T,
applied along φSTF = 60◦. The two transverse field orientations correspond to the first maxi-
mum (φ =60◦) and minimum (φ =150◦) of the twofold rotation pattern.

field. This is expected from the exponential dependence of the LZ prob-
ability on the tunnel splitting shown in Eq. (8), and the power law depen-
dence of the tunnel splitting on the magnitude of the transverse field (see
Eq. (3)).32 There are significant deviations from the exponential behavior
in the right hand graphic for a transverse field applied along the first of
the twofold minima, φ =150◦. The largest deviations are observed at field
Hp(k = 5) ∼ 0.45 T, Hp(k = 6) ∼ 0.3 T and Hp(k = 7) ∼ 0.35 T. This is remi-
niscent of the Berry phase observed in Fe8.33

The results shown on the right graph of Fig. 28 can be compared
with the calculations of the tunnel splitting versus the transverse field
shown in Fig. 13 that were performed by taking into account two incom-
mensurate anisotropy terms in the Hamiltonian (Eqs. (5) and (6)). In fact,
the values, E =10−15 mK, used in these calculations were chosen accord-
ing to the results shown in Fig. 28 and agree with the values extracted
from high frequency EPR measurements (Sec. 4). The agreement between
theory and experiments is very good and constitutes the first evidence of
quantum interference phenomena in a SMM system with incommensurate
transverse anisotropies.
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3.5. Summary of Magnetic Relaxation Experiments

We have shown in this section that LZ magnetic relaxation experi-
ments allow us to determine the complete distribution of tunnel splittings
in Mn12-ac. The results obtained through a multi-crossing LZ method
show that a distribution of second order anisotropies with non-zero mode
is required in order to explain our data, such as in the solvent disorder
model proposed by Cornia et al.16 LZ relaxation experiments carried out
in the presence of a transverse field applied at arbitrary directions with
respect to the crystallographic axes of the sample enabled studies of the
symmetry of the MQT probability. We have shown that the MQT prob-
ability has a general fourfold rotation pattern as a function of the orien-
tation of a transverse field. This is associated with equal populations of
molecules with opposite signs of a second order transverse anisotropy. The
LZ method allows the selection of a subset of molecules with different val-
ues of the tunnel splitting for further study. By applying a transverse field
in the selection process, we can select a fraction of molecules in the sam-
ple with lower symmetry and with different signs of E. Using this selec-
tion procedure we have studied a small fraction of molecules with one sign
of E and with the largest tunnel splitting values within the distribution.
These show an unusual Berry phase phenomena for several transverse field
values that does not lead to complete zeroes in the tunnel splitting. Our
results on the symmetry of MQT can be explained in terms of incom-
mensurate transverse anisotropies in the Hamiltonian that explain, among
other things, why the observed Berry phase phenomena does not depend
in any simple way on that expected from either anisotropy term alone.

4. HIGH FREQUENCY EPR EXPERIMENTS

High frequency (40–200 GHz) single crystal Electron Paramagnetic
Resonance (EPR) measurements were carried out using a millimeter-wave
vector network analyzer (MVNA) and a high sensitivity cavity perturba-
tion technique; this instrumentation is described elsewhere.46 Temperature
control in the range from 2 K to room temperature was achieved using
a variable-flow cryostat. The magnetic field was provided by a horizon-
tal superconducting split-pair magnet with vertical access, enabling angle
dependent studies (< 0.1◦ resolution) and approximate alignment of the
single crystal.27 In order to make accurate comparisons with the mag-
netization studies presented in the preceding sections, all data presented
in this section were performed on a single deuterated crystal of Mn12-
ac (d-Mn12-ac), having approximate dimensions 1 × 0.3 × 0.3 mm3. This
crystal was selected from a batch of samples which had previously been
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removed from the mother liquor and stored for 1 year in a refrigera-
tor (at 5◦ C) prior to the measurement. This particular batch was grown
using standard methods,41 albeit in a completely independent synthesis
from the samples used for the magnetization measurements. The sample
was separately cooled under vacuum from room temperature at 5 K/min
in one of two orientations for field rotation in (i) the x–y plane, and (ii)
a plane perpendicular to the x–y plane. In the former case, the sample was
mounted on the side wall of a cylindrical TE011 cavity (center frequency
=53.1 GHz, Q∼20,000) with its easy axis parallel to the cavity axis such
that the microwave field H1 was aligned parallel to the sample’s easy axis
(and, therefore, perpendicular to the applied DC field). In the latter case,
the sample was mounted on the end plate of the same cavity, and DC
field rotation was carried out for angles close to the x–y plane (within
15◦), with the microwave H1 field again parallel to the sample’s easy z-axis.
Field sweeps were restricted to 6.6 T due to limitations of the split-pair
magnet. As will become apparent, the data obtained for the d-Mn12-ac
are in qualitative agreement with earlier published results obtained for the
hydrogenated Mn12-ac.19,27

4.1. Magnetic Symmetry Measurements in the High-Field Limit

In the preceding sections, it has been shown how the Landau–Zener
method may be applied to SMMs in order to determine very weak trans-
verse terms in Eq. (1). Moreover, the Landau–Zener method allows one to
select molecules, based on the tunneling rates of the different species. Sub-
sequently, by performing angle dependent studies on each sub-species, one
can deduce the underlying symmetries of the dominant tunneling matrix
elements. While this method is extremely powerful, it is evident from the
discussion in Sec. 2.3 that, for systems with multiple sources of transverse
anisotropy (intrinsic and extrinsic), deconvolution of the different contri-
butions to the tunnel splittings can be problematic, i.e. in Figs. 6–9 it is
seen that competing E and C terms results in a competition between the
two-fold and four-fold symmetries of these interactions. The reason for
this competition is that, at low-fields, the E and C terms operate in differ-
ent high orders of perturbation theory, thereby resulting in a complicated
interaction between the two perturbations.

At first sight, it is not obvious how EPR experiments, conducted in
the GHz frequency range, could shed new light on the nature of trans-
verse interactions which manifest themselves as miniscule tunnel splittings
of order 104 Hz at low-fields. However, the so-called “tunnel-splittings” are
measured by the Landau-Zener method at low field wherein the transverse
terms operate in very high orders of perturbation theory within an mz
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basis (see Eq. (3)), where the quantization axis is defined by the global
easy-axis of the crystal. For high magnetic fields applied in the transverse
direction, such a picture is no longer valid due to the conflicting sym-
metries imposed by the crystal field and the applied field. Herein lies the
beauty of the high-field EPR technique. By applying a sufficiently strong
transverse field, one can reach a limit in which the appropriate basis of
spin states is defined by a quantization axis parallel to the applied field,
i.e. the x-direction. In such a limit, transverse zero-field interactions oper-
ate in zeroth-order. Consequently, their effects may be rather strong. As an
illustration of this point, consider the simplest zero-field Hamiltonian:

H=−DS2
z +E(S2

x −S2
y )−gµBHxSx, (15)

Making a substitution for S2
z in terms of (S2

x +S2
y ), one obtains:

H= 1
2
(D +3E)S2

x + 1
2
(D −E)(S2

y −S2
z )−gµBHxSx, (16)

which can be re-written as:

H= 1
2
(D +3E)S2

x −gµBHxSx,+H′
T , (17)

This equation is diagonal in Sx , and has the same form as Eq. (15). There-
fore, to lowest order, the high-field eigenvalues will be given by:

ε(mx)≈ 1
2
(D +3E)m2

x −gµBHxmx, (18)

Similar arguments hold for higher order transverse terms. Thus, the trans-
verse high-field EPR spectra provide perhaps the most direct means of
measuring these transverse terms. Indeed, this represents one of the more
illustrative examples of the importance of high-field EPR as a spectro-
scopic tool for studying quantum magnetism. Not only does the effect of
the zero-field transverse terms shift to zeroth order, but the symmetry of
such interactions is also preserved. This is best illustrated using the same
example as above, with the field applied along the y-axis instead of the
x-axis. In this case, Eq. (15) may be re-written:

H= 1
2
(D −3E)S2

y −gµBHySy +H′′
T , (19)

giving

ε(my)≈ 1
2
(D −3E)m2

y −gµBHymy, (20)

Thus, from Eqs. (18) and (20), it is apparent that the influence of
the rombic (E) term changes sign upon rotating the applied field from
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the x-axis of the E-tensor to the y-axis. This two-fold behavior is not
unexpected; indeed, it is obtained also from the exact diagonalization
calculations shown in Figs. 6–8, which correspond to the high-field/fre-
quency limit discussed here. However, unlike lower-field calculations, the
2nd and 4th order interactions decouple completely at high-fields, as do
other transverse interactions. Thus, one may consider their effects com-
pletely independent. This point is illustrated in Fig. 8, where it can be
seen that the effect of an intrinsic fourth-order anisotropy is to produce a
ground- to-first-excited-state splitting (�k=0) which oscillates as a function
of the field orientation within the hard/medium plane, with a periodicity
of 90◦. The disorder-induced rhombic anisotropy, meanwhile, has no effect
on this four-fold behavior. It simply causes a two-fold modulation of the
tunnel splitting, which superimposes onto the four-fold behavior caused
by the fourth-order interaction. Because of the complete independence of
these effects, one can in principle determine any misalignment, β, between
the hard axes associated with the second and fourth order transverse an-
isotropies, as illustrated in Fig. 8.

In order to make direct comparisons with other spectroscopic studies
(e.g. neutron12 and EPR7,13,16) we re-write the Hamiltonian of Eq. (1) in
the following form:

H=D′
[
S2

z − 1
2
S(S +1)

]
+EÔ2′

2 +B0
4 Ô0

4 +B4
4 Ô4

4 +HZ (21)

where H = µB

H · ↔

g · 
S is the Zeeman term due to the applied magnetic
field, EÔ2′

2 is the first term in Eq. (5), and ÔA
B are the Steven’s opera-

tors, of order B in the spin operators and possess A-fold symmetry (i.e.
Ô4

4 ≡ 1
2 (S4+ − S4−)). The uniaxial parameter D′ is not exactly the same as

the D parameter in Eq. (1) [or Eqs. (15)–(20)]. This is due to the occur-
rence of an S2

z term in the Ô4
4 Steven’s operator, i.e. the presence of a sig-

nificant fourth-order axial anisotropy has the effect of renormalizing the
quadratic m-dependence of the barrier.48,49

Figure 29 displays the microwave absorption obtained for different
field orientations within the hard (x – y) plane of the sample; the tempera-
ture was 15 K and the frequency was 51.3 GHz in every case. The peaks in
absorption correspond to EPR. The data were obtained at 7.5◦ intervals,
where the angle φ refers to the field orientation relative to one of the flat
edges of the square cross section of the sample. The resonances have been
labeled according to the scheme described in Ref. 27. For fields applied
approximately parallel to the hard plane, only α-resonances are observed
(β-resonances appear for field rotation away from the hard plane, see
below). The highest field peak, α8, corresponds to an excitation between
levels which evolve from the mz = ±9 zero-field doublet. The transition
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Fig. 29. (Color on-line) Microwave absorption obtained for different field orientations
within the hard (xy-) plane of the sample; the temperature was 15 K and the frequency
was 51.3 GHz in every case. The peaks in absorption correspond to EPR. The data were
obtained at 7.5◦ intervals, where the angle φ refers to the field orientation relative to one of
the flat edges of the square cross section of the sample. The resonances have been labeled
according to the scheme described in Ref. 27. The red traces correspond to field orien-
tations approximately parallel to the hard/medium axes of the E tensor, i.e. orientations
corresponding to the maximum splitting of the low and high field shoulders. The blue traces
correspond to orientations of the hard axes of the B4

4 tensor.

from the ground state, mz =±10 (k =0 resonance), is not observed within
the available field range for these experiments; at 51 GHz, its expected
position is at HT ∼9 T. For a detailed discussion of the resonance labeling
scheme, as well as the temperature, frequency, field and field orientation
dependence of the EPR spectra for Mn12-ac, refer to Ref. 27.

Immediately apparent from Fig. 29 is a four-fold variation in the
positions of each cluster of resonances (α8, α6, etc.). Note that each
of the resonances exhibit fine structures, which also depend on the field
orientation φ; these are related to the disorder in the crystal, which we
discuss further below. The four-fold shifts are due to the intrinsic fourth-
order transverse anisotropy B4

4 Ô4
4 , as has previously been established

for h-Mn12-ac.19 Figure 30 shows a color contour plot of the absorp-
tion intensity versus magnetic field strength and the azimuthal angle φ.
Superimposed on the absorption maxima are two kinds of fit to the
φ-dependence of each peak. The solid blue curves were obtained simply
by fitting the positions of the central peaks in Fig. 29 with pure sine
functions having four-fold periodicity. The fits represented by horizontal
bars, meanwhile, were obtained by exact diagonalization of the Hamilto-
nian matrix, assuming accepted values for the zero-field parameters D′ and
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Fig. 30. (Color on-line) Color contour plot of the absorption intensity (see Fig. 29) versus
magnetic field strength and the azimuthal angle φ; the darker shades correspond to stronger
absorption. Superimposed on the absorption maxima are fits to the φ-dependence of the cen-
tral positions of each peak (solid blue lines), as well as fits to the positions of the shoulders
(solid red lines). The horizontal bars are fits to Eq. (21) (see main text for explanation). The
approximate orientations of the hard axes corresponding to the E (HE) and B4

4 (HC) ten-
sors are indicated. The open circles represent recent data points obtained for h-Mn12-ac.47

B0
4 (D′ =−0.455 cm−1 and B0

4 =2×10−5 cm−1). The fourth-order transverse
parameter B4

4 =3.2×10−5 cm−1 is the only unknown parameter in the fit.
D′ and B0

4 were verified independently from easy axis measurements, and
all peak positions are consistent with a single value of B4

4 . We note that
this value is in precise agreement with that found for h-Mn12-ac, as is to
be expected for this fourth-order interaction which is related to the intrin-
sic symmetry of the Mn12O12 molecule. From the maxima and minima in
the peak position shifts induced by the B4

4 Ô4
4 term, we estimate that the

hard and medium directions of this intrinsic crystal field interaction are
oriented at φHC =−4.5◦ ± 5◦(+i90◦) and φMC = 41.5◦ ± 5◦(+i90◦) relative
to the square edges of a typical single crystal sample.

Next we turn to the angle-dependent fine structures which are very
apparent in the ranges φ = 300◦–330◦ and φ = 30◦–60◦ in Fig. 29. The
first point to note is the fact that we see shoulders on both the high and
low-field sides of the main peaks in these angle ranges. This contrasts the
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Fig. 31. (Color on-line) a) Hard-plane angle (φ) dependence of the splitting of the high and
low-field shoulders, for the α8 peak. This figure may be compared with Fig. 2 of Ref. 19,
which displays similar data for the h-Mn12-ac complex. In (a), the positions of the low-
(black) and high-field (green) shoulders on α8 have been separately fit with sine functions.
The difference between these fits is displayed in (c), together with similar curves generated by
the same procedure for peaks α6 and α4. The splittings plotted in (c) are a measure of the
shifts caused by the disorder-induced rhombic term for the low-symmetry Cornia variants16

(see also Fig. 8); all curves are in agreement (±2◦) as to the orientation of the hard/medium
two-fold directions. In (b), the data in (a) are plotted in such a fashion as to illustrate
the real two-fold nature of the angle dependence of the high- and low-field shoulders. The
approximate orientation (φ = −4.5◦) of one of the hard four-fold axes (HC) is indicated in
(b), and the approximate orientation (φ = −31.5◦) of one of the hard/medium two-fold axes
(HE) is indicated in (c).

situation found from our earlier studies of h-Mn12-ac,19 where only high-
field shoulders were observed. We comment on these differences at the end
of this section. We first discuss the origin of the angle dependence of the
shoulders, which are very apparent in the ranges φ = 300◦–330◦ and φ =
30◦–60◦ in Fig. 29; a more in-depth discussion can be found in Refs. 19,
27. The high- and low-field shoulders are due to the n=1 and n=3 Mn12-
ac hydrogen-bonding variants in Cornia’s solvent disorder model.16 These
variants, which comprise roughly 50% of the total molecules, are thought
to possess a significant rhombic anisotropy due to the reduced symme-
try of the surrounding hydrogen bonded acetic acid solvent molecules. The
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second-order operator, Ô2
2 , associated with the rhombic distortion gives

rise to two-fold behavior, as was clearly demonstrated from the magnetic
measurements in the previous section of this paper. It is important to rec-
ognize that the disorder is discrete, since the acetic acid can only bond
at four positions on the Mn12 molecule. Thus, one expects only two hard
directions associated with the n = 1 and n = 3 low symmetry variants,
which are separated by 90◦. In EPR, the Ô2

2 operator causes shifts in the
peak positions. When the applied transverse field is parallel to one of the
hard axes, it is obviously perpendicular to the other, which causes shifts
in the EPR intensity to both the low- and high-field sides of the central
peaks, hence the shoulders. When the field is applied in between these two
directions, the EPR intensity due to the low-symmetry variants collapses
into the central portion of the peak, hence the disappearance of the shoul-
ders every 90◦ (see Figs. 29 and 30). In actual fact, this apparent four-fold
behavior reflects the two-fold nature of the rhombic distortion caused by
the hydrogen bonding acetic acid molecules, with the EPR intensity for a
given variant shifting from the low (high) to the high (low) field side of
the main peak every 90◦, i.e. the periodicity is actually 180◦. This two-fold
behavior is then superimposed on the intrinsic four-fold periodicity, as can
be seen in Fig. 31.

An important point to note from the hard-plane rotation data is the
phase shift between the four-fold modulation of the central peak position
(blue curves in Fig. 30) and the two-fold shifts of the low and high field
shoulders (red curves in Fig. 30). Indeed, this is one of the main points of
this article. As discussed in Sec. 2.3, this difference indicates a ∼ 27◦ ± 3◦
misalignment of the Ô2

2 and Ô4
4 tensors, as was originally suspected for h-

Mn12-ac.18,19 The present study provides further support for this finding,
thereby illustrating the remarkable differences between the global and local
symmetries of Mn12-ac.

In order to make quantitative comparisons between the disorder-
induced effects in h-Mn12-ac and d-Mn12-ac, we performed a single fit to
each of the peaks in Fig. 30 via exact diagonalization of the Hamiltonian
matrix [Eq. (21)]. This fit is represented by the horizontal bars in Fig. 30.
Our procedure obviously takes into account the misalignments of the Ô2

2
and Ô4

4 tensors, as described in Sec. 2.3. Thus, the employed Hamiltonian
is subtly different from the standard form used by most spectroscopists,
which may explain slight differences in the obtained Hamiltonian param-
eters. The only free parameters in the fit were then the E and B4

4 coeffi-
cients (corresponding to the Ô2

2 and Ô4
4 tensors), for which we obtained

the values ±0.014(2) cm−1 and ±3.2(5) × 10−5 cm−1 respectively. The E

value is significantly larger than the one obtained in earlier experiments
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(Ref. 19.) We attribute some of this difference to the modified Hamilto-
nian used in our more recent fits, which takes into account the misalign-
ments of the Ô2

2 and Ô4
4 tensors. However, much of the difference appears

to be real. The larger E-value found from the present study is some-
what surprising. However, as will be seen below, more recent measure-
ments on a very fresh h-Mn12-ac sample are in excellent agreement with
the value of ±0.014(2) cm−1 found from this study (open blue circles in
Fig. 30). Thus, the difference is likely related to sample quality and/or sol-
vent loss. A tell-tale sign of the higher sample quality is the observation
of both high- and low-field shoulders on the main EPR peaks. In con-
trast, only high-field shoulders were seen in the earlier experiments on h-
Mn12-ac.19,27 In fact, the absence of a low-field shoulder is discussed at
some length in Ref. 27, where it is shown that this peak is unresolved
from the broad low-field tail associated with the central portion of the
peak. The reason for the asymmetry between the high and low-field shoul-
der is related to easy axis tilting caused by the solvent disorder (discussed
in the next sub-section). Although both shoulders are seen in the present
study, a clear asymmetry can be seen from the data in Fig. 29. We sus-
pect that the samples used in the earlier experiments may have suffered
significant solvent loss, either upon cooling from room temperature under
high vacuum, or simply as a result of being stored in air for more than
1 year prior to the measurements. Indeed, variations in the D-strain mea-
sured in different Mn12-ac samples has previously been reported by us.21

Increased D-strain leads to broader EPR lines, thus probably explaining
why the shoulders are clearly resolved in the present investigation, but not
in Refs. 19, 27. Without two well resolved shoulders, it is likely that the
E-strain was under-estimated in Ref. 19, or it could simply be that the
E-strain is weaker in samples that suffer significant solvent loss. Based on
more recent experience working with SMMs containing considerably more
volatile solvents, we have recently developed sample handling procedures
which minimize solvent loss, e.g. encapsulating samples in oil prior to
cooling under atmospheric helium gas. The differences between the present
measurements and those reported in Refs. 19, 27 highlight the importance
of sample handling. Indeed, it is likely that Mn12-ac samples prepared
by different groups, and studied by different techniques, exhibit significant
differences in their solvent content, resulting in subtly different conclusions
concerning the quantum dynamics. Solvent loss probably also provides an
explanation for the widths of the distributions of tunnel splittings found
in the magnetic relaxation experiments described in Sec. 3. For this rea-
son, it will be advantageous to prepare Mn12 SMMs which do not exhibit
such a dramatic dependence on solvent content.
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4.2. Easy-Axis Tilting

In this section, we briefly present the results of measurements for field
rotations away from the hard plane in order to illustrate the presence of
a small distribution of tilts of the easy axes of the d-Mn12-ac molecules.
In the following figures, the polar angle θ represents the angle between
the applied DC magnetic field and the global easy axis of the crystal,
i.e. θ =90◦ indicates the hard/medium-plane direction. Field rotation was
performed in a plane approximately parallel to one of the large flat sur-
faces of the needle-shaped crystal (i.e. φ = 0, or 90◦, etc.). A more exten-
sive discussion of the analysis and interpretation of the results of similar
experiments for the h-Mn12-ac complex have been published elsewhere.27

Consequently, we present only data for d-Mn12-ac in this article, and dis-
cuss the implications without including detailed simulations, which will be
published elsewhere.47

Figure 32 shows a series of absorption spectra obtained at 0.2◦ inter-
vals over the range from θ = 90◦ to 97◦. Again, the peaks in absorption
correspond to EPR, and the labeling is discussed in Ref. 27. The quality
of the data is noticeably poorer than the data in Fig. 29, and is due to
the positioning of the sample at a different location in the cavity, where
the geometry of the electromagnetic fields are not quite optimal for EPR.
Figure 33 displays (a) a gray scale contour map and (b) a 3D plot repre-
senting the same data shown in Fig. 32 (the darker colored regions corre-
spond to stronger EPR absorption), albeit for a wider range of angles (up
to θ = 105◦). As discussed at great length in Ref. 27, the transverse-field
EPR spectra for Mn12-ac exhibit unusual selection rules for frequencies
below 90 GHz: two series of resonances are separately observed (labeled
α and β) as the magnetic field is tilted away from the hard plane. These
selection rules are extremely sensitive to the field orientation for angles
close to the hard plane. Thus, deviations from the behavior predicted by
the giant spin model (Eq. (1)) provide evidence for tilts of the molecules.

51.3 GHz simulations of the EPR spectra for an idealized Mn12-ac
sample are displayed in Fig. 34 – both a color contour map for the
full θ = 90◦ to 105◦ range (Fig. 34a), and a 3D view for the θ = 90◦ to
97◦ range (Fig. 34b). These 15 K simulations were generated using the
accepted Hamiltonian parameters given above. A Gaussian line shape was
employed with a line width typical for a single solvent-disorder variant in
Cornia’s model (see Ref. 27). While this line shape/width is clearly quite
different from the experimental data, which is complicated by the con-
tributions of several Mn12-ac variants, we note that the choice of line
width/shape does not affect the following analysis. The simulations indi-
cate a range of about 1.6◦ (from 91.8◦ to 93.4◦) over which the EPR inten-
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Fig. 32. (Color on-line) Microwave absorption spectra obtained at 0.2◦ intervals over the
range from θ = 90◦ to 97◦ (φ ∼ 5◦); the temperature was 15 K and the frequency was
51.3 GHz in every case, and the traces are offset for clarity. The peaks in absorption corre-
spond to EPR, and the labeling is discussed in Ref. 27. See main text for discussion of the
data.

sity associated with both the α8 and β7 transitions is negligible. Thus,
for a perfect crystal, without any disorder, one should expect a similar
behavior in the actual EPR spectra. However, careful inspection of Figs.
32 and 33 indicates a significant overlap of the α8 and β7 peaks in the
92◦ to 93◦ range. These two facts point to a spread in the orientations
of the magnetic axes of the molecules, with a cut-off of at ∼1.3◦ away
from the global directions, i.e. we predict that, on average, the magnetic
easy axes of the low-symmetry (disordered) molecules are tilted away from
the crystallographic z-axis, and that the distribution extends roughly 1.3◦.
Once again, a very similar behavior has been observed for h-Mn12-ac in
Ref. 27, albeit that the distribution extends to ∼1.7◦. We note that the h-
Mn12-ac experiments were conducted using a rotating cavity50 to higher
magnetic field, where the experimental deviation from the simulation is
even more pronounced. Thus, easy axis tilting appears to be a general fea-
ture in Mn12-ac and, as discussed earlier in this article, this likely provides
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Fig. 33. (Color on-line) (a) A color contour map and (b) a 3D color surface plot represent-
ing the same data shown in Fig. 32 (the darker colored regions correspond to stronger EPR
absorption). We plot the data in this manner for direct comparison with simulations shown
in Fig. 34. The significant overlap of the α and β resonances suggests tilting of the molecules.
See main text and Ref. 27 for discussion.

an explanation for the lack of selection rules in the magnetization steps
observed from hysteresis experiments. The slightly broader tilt distribution
for h-Mn12-ac may be related to the increased solvent loss.

Finally, we comment on the correlation between the disorder-induced
rhombic anisotropy and the easy axis tilting. It has been shown by Park
et al.,35 that the magnetic anisotropy tensor absolutely determines the
orientations of the principal magnetic axes. In other words, one expects
the effects of the solvent disorder to be accompanied by local easy-axis
tilting. This was also pointed out by Cornia et al.16 in their x-ray analy-
sis of Mn12-ac. We have subsequently shown this to be the case from EPR
studies of h-Mn12-ac,27 where it was shown that the high-field fine struc-
tures in the transverse EPR spectra displayed a different angle dependence
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Fig. 34. (Color on-line) (a) A color contour map and (b) a 3D color surface plot represent-
ing simulations of the data in Fig. 33, assuming that all molecules are aligned, i.e. no tilting.
The simulations were generated using the Hamiltonian parameters given in the text, and the
temperature and frequency are 15 K and 51.3 GHz, respectively.

compared to the main peaks. These findings suggested that each solvent
disorder variant has a distinct angle dependence and, therefore, a distinct
tilting behavior, i.e. the tilting and the anisotropy are correlated. This is
again apparent for d-Mn12-ac from Fig. 33a, where the shoulders are visi-
ble as narrow horizontal streaks on the high field sides of each of the main
peaks. It is quite evident that the narrow streaks (i.e. the shoulders) span a
narrower angle range compared to the main peaks. In fact, the high field
shoulders on the α8 and β7 peaks exhibit a considerable range where nei-
ther is observed. Indeed, this range corresponds almost exactly to the 1.6◦
found from the simulations (Fig. 34). It is important to note that this local
tilting of the magnetic axes (caused by local symmetry lowering), is quite
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different from physical tilting of the molecules caused e.g. by strains in the
sample.

Comparisons between Figs. 32, 33 and 34 indicate that the angle depen-
dence of the high-field shoulders agrees very well with the simulations. The
reason for these differences between the main peaks and the shoulders is
explained in Ref. 27 as being due to discrete easy axis tilting, wherein the
tilting is confined to two orthogonal planes defined by the hard and medium
directions of the associated disorder-induced Ô2

2 (E) zero-field tensor. Essen-
tially, the high-field shoulders on the EPR peaks are due to molecules which
are tilted in a plane which is approximately perpendicular to the plane of
rotation of the applied magnetic field. Consequently, the tilts due to these
molecules do not project onto the field rotation plane, i.e. the experiment is
insensitive to tilts in this direction. Meanwhile, the low-field tail of the EPR
peaks is due to molecules which tilt in the orthogonal plane. For these mole-
cules, the tilts have a maximum projection on to the field rotation plane, i.e.
the experiment is maximally sensitive to tilts in this direction. The present
studies support the findings of the original study for h-Mn12-ac,27 providing
further confirmation for the discrete tilting idea.

5. CONCLUSIONS

In summary, these experiments provide a comprehensive understand-
ing of the factors that influence the symmetry of MQT in Mn12-ac, the
first and most widely studied SMM. Interestingly, the reason so much
attention has focused on Mn12 has been the high global symmetry of
single crystals, as most known SMMs have lower site symmetry. The
data presented here show that disorder lowers the symmetry locally and
leads to an intricate interaction between transverse anisotropy terms:
the first associated with disorder and the second intrinsic to an “ideal”
Mn12-molecule. While at first sight a nuisance, these complexities have
been interesting from many perspectives. From experiment, they have been
a challenge to understand and characterize, and have required combining
unique advanced and sensitive magnetic characterization techniques that
have been developed by the authors over many years. In particular, this
research involved combining single crystal high-frequency and high-field
EPR and low-temperature magnetometry, both with arbitrarily directed
applied magnetic fields. The results obtained by magnetic measurements of
MQT have had implications for EPR studies and vice-versa. From a the-
oretical perspective, given a structural model of the molecule and solvent
environment, density functional theory has been able to capture many of
the features observed in these experiments, including the magnitudes and
form of the transverse magnetic anisotropies and the easy axis tilts.35 This
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includes the angle between the 2nd order and 4th order transverse aniso-
tropies, which has been central to understanding the combined data set, as
well as the easy axis tilts. This research thus represents an important mile-
stone in our understanding of the factors that influence MQT in SMMs.
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z + [25−30S(S +1)]Ŝ2
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