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We report on detailed measurements of the magnetization of a single crystal, ghbétate in a

swept magnetic field for a set of closely spaced temperatures. We show that under some
circumstances relaxation that should proceed from the ground state appears to be missing under
conditions where one would expect it to be present. We argue that this enigma implies there is a
distribution of tunnel splittings, so that tHieormalized magnetization determines the fraction of
distributed molecules that tunnel instead of the tunneling probability of an identical set of
molecules. ©2002 American Institute of PhysickDOI: 10.1063/1.1456423

The high-spin molecular nanomagnet Miacetate, magnetic relaxation due to tunneling when levels cross on
([Mn450;5(CH;CO0),4(H,0),4]- 2CH;COOH- 4H,0), is  opposite sides of the anisotropy barrier. In the temperature
composed of weakly interacting magnetic clusters of 12 Mrrange of these measurements, maxima are observel for
atoms, tightly coupled to give a ground-state s@i 10, =|m+m’|=5 through 9. Considerable structure associated
regularly arranged on a tetragonal body-centered latticewith different pairs (n,m’) is clearly seen within each step
Strong uniaxial anisotropy yields a set of energy levels corN, with a transfer of “spectral weight” to lower values of’
responding to different projectionsi=+10,+9,...,0 of deeper in the well as the temperature is reduced. A single
the total spin along the easyaxis of the crystal. Below the feature corresponding to thermally assisted tunneling re-
blocking temperatureTz~3 K, steep steps are obseré@d mains distinct from the ground state: it shifts gradually to the
in the M vs H curves due to enhanced relaxation of theright towards a higher field as the temperature is reduced,
magnetization whenever levels on opposite sides of the arbecomes a shoulder as shown in Fig. 1 on the low-field side
isotropy barrier coincide in energy. Tunneling proceeds abf the ground-state peak, and ultimately merges with it. For
values of longitudinal magnetic fields: sufficiently low temperatures, the curves do not depend on

temperature and the tunneling takes place from the lowest,

D A d state of the metastable well
H,=N——/|1+ —(m?+m'?)|, 1 groun . o R
z .M D( ) @ The progression can be examined in detail in Fig. 2,
where the anisotropid =0.548(3) K, the fourth-order lon-
gitudinal anisotropg/ﬁ=l.173(4).>< 10 %K, andg, is egti- 30 N=5 N=6 N=7 N=8 N=
mated to be 1.94).>" The tunneling occurs from levet’ in TTag &2 &8 <L o=
the metastable well to leveh in the stable potential well, 25| 8E €& EE EE EE |
andN=|m+m’| is the Nth family of level crossings. The - i i
second term inside the bracket is smaller than the first so that £ 2.0} Ll ‘ 1
stepsN occur at approximately equally spaced intervals of 2 : zj‘ggg L
magnetic field, D/(g,ug)~0.42 T. Structure is observed S15r] i 1
within each step due to the presence of the fourth-order lon- & :
gitudinal anisotropyA, allowing identification of the energy 2 i
levels that are responsible for the tunneling observed at dif- o5k il
ferent temperatures, magnetic fields, and sweep rates. ; y
izati i 0.0 beremteom®d | ¥ i~ N
The magnetization of_ small single crystals _of 5°E 50 35 40 45 20
Mn,,-acetate was determined by methods described Magnetic Field (T)

elsewheré.For different temperatures between 0.24 and 0.88
K for a fixed sweep rate (IIHZ/dt= 1.88x10°3 T/s Fig. 1 FIG. 1. The derivativedM/dH vs H for a set of closely spaced tempera-

. - o tures. Selected data points are shown for 0.88 K and 0.24 K only. The
ShOWS the first derivativejM/dH, Qf the magpet!zatlorM remaining curvesunlabeled correspond to intermediate temperatures 0.88
with respect to the externally applied magnetic figld The >T>0.24 K. Two distinct features are seen at intermediate temperatures for

maxima occur at magnetic fields corresponding to fasteresonancesi=7,8, and 9.
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o ) ) FIG. 3. The normalized tunneling rale= dM/JH/(M¢,— M) vs magnetic
FIG. 2. The derivative/M/JH vs H at two different temperatures. Vertical fia1d at T=0.24 K andT=1.05 K for theN=7 transition.
lines are drawn for each resonari¢eorresponding to the magnetic field for
tunneling from the first excited state’ = — 9 (dotted line at the lower fie)d
and from the ground stat®’ = — 10 (solid line at the higher field
tion remains, which depends on how much magnetization

has relaxed at earlier fields. The dependence on past history

where data are shown at 0.24 and 1.05 K. For each res@an be folded out of the problem by normalizialyl/JH by
nance,N=...5,6,78..., the twovertical lines denote the the remaining out-of-equilibrium magnetizatioM(,—M).
magnetic fields corresponding to tunneling from the first ex-Defined this way, the normalized tunneling raté,
cited statem’=—9 (dotted ling, and the lowest staten’ = dM/JH/(Mg;— M), removes the history dependence of
=—10 (solid line). At 1.05 K, the tunneling occurs neither the peak heights i@dM/dH.
from the ground state nor from the first excited state. Instead, According to the Landau—Zerfetheory of tunneling in
the three maxima associated with tNe=6,7,8 resonances a swept field, the tunneling probability depends only on the
are probably due to a superposition of tunneling involvingtunnel splitting and sweep rate. Therefore, for a set of iden-
thermal activation to higher states in the weth’'(=—8, tical molecules] at fields corresponding to transitions from
—7,..). At 0.24 K, all tunneling occurs from the ground statethe ground state should be independent of temperature. It is
in the field range of these measurements. clear in Fig. 3 that this is not the case. The total normalized
We now arrive at the enigma referred to in the abstracttunneling rate at 1.05 K is significantly smaflehan it is at
Examination of resonandd=7 at the two temperatures il- 0.24 K. Since the sweep rate is the same for both tempera-
lustrated in Fig. 2 shows that tunneling proceeds almost eriures, we must conclude that Mracetate molecules have a
tirely from the excited levels af=1.05 K with nearly no  distribution of tunnel splittings.
contribution from the ground state, while the tunneling at  This scenario implies that the interpretation of the mag-
0.24 K is entirely due to ground-state tunneling fée=7.  netization data is different from what has usually been as-
The enigma is that ground-state tunneling appears to be alsumed. For a set of identical molecules, the probability of
sent at the higher temperature. Similar behavior is found afunneling from the ground state of the metastable well is
every step. One should bear in mind that although the popwiven by the Landau—Zener formulaPy=1—exp
lation of the excited states is exponentially sensitive to tem{—mA2/2v\),” where Ay is the tunnel splitting for thé\th
perature,n=nq,e”¥*T the population of the ground state, ground-state resonance ang is the energy sweep rate de-
ng=no[1—€e ¥T]=ny, at any low temperaturd<Tg. fined by vy=(g,ushi/k3)(2S—N)dH,/dt. For a distribu-
The spin population of the lowest level in the metastabletion of tunnel splittings,Ay; (wherei represents theth
well is therefore essentially the same at 1.05 and 0.24 K, antholeculg the probability that a spin tunnel from the ground
if tunneling occurs from the ground state at the lower tem-state of the metastable well must be averaged over all the
peratures, it should also be observable at 1.05 K. One coulgholecules, (Py ;)= (1/ng) =;1—exp(— wAﬁ,’i/Zz; n), Where
understand the absence of ground-state tunneling atNstep ng, is the total number of molecules in the ground state of the
=7 at 1.05 K if relaxation at lower fields had effectively metastable well. If the distribution is sufficiently broad, then
depleted the out-of-equilibrium spin magnetization, so tha{Py ;) is best examined on a log scale, where an exponential
the system has relaxed to near equilibrium. However, as thimoks like a step function, so that exp(rAﬁ’iIZz; N =~0(1
magnetic field sweeps beyond the field corresponding to- wAﬁyilzvN). This means that for a fixed field sweep rate,
ground-state tunneling di=7 at 1.05 K, a sizable maxi- dH,/dt, those molecules that have tunnel splittings obeying
mum develops at the next resonamte 8, indicating that an WAﬁ’iBZUN will tunnel from the ground state of the meta-
appreciable fraction of the spin magnetization is still out ofstable well for each resonandé Thus, with a sufficiently
equilibrium and is available to relax instead at the next set obroad distribution of tunnel splittings, the normalized mag-
level crossings alN=_8. netization at each plateau represents fthection of mol-
The resolution to the enigma is most simply revealed byecules that have large enough splittings to have tunneled,
the following analysis. The tunneling amplitude at a givenrather than determining the probability of tunneling of a set
field depends on how much out-of-equilibrium magnetiza-of identical clusters. Thus, at any particular resonand,
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