Modeling the Photosynthetic Water Oxidation **Complex:** Activation of Water by Controlled Deprotonation and Incorporation into a Tetranuclear Manganese Complex

Guillem Aromí,[†] Michael W. Wemple,[†] Sheila J. Aubin,[‡] Kirsten Folting,[†] David N. Hendrickson,^{*,‡} and George Christou*,†

Department of Chemistry and Molecular Structure Center Indiana University, Bloomington, Indiana 47405-4001 Department of Chemistry, 0358, University of California at San Diego, La Jolla, California 92093-0358

Received September 2, 1997

Elucidating the structure and mechanism of action of the predominantly carboxylate-ligated, oxide-bridged Mn₄ cluster at the water oxidation center (WOC) of plants and cyanobacteria is of great current interest.^{1,2} This cluster binds, deprotonates, and oxidatively couples two H₂O molecules to yield O₂, but the precise details of this transformation are unclear. Recently, we have developed preparative methodology to the Mn^{III}₃Mn^{IV} complexes $[Mn_4O_3X(O_2CMe)_3(dbm)_3]$ (X⁻ = Cl⁻, Br⁻, PhCO₂⁻, MeCO₂⁻; $dbmH = dibenzoylmethane)^3$ containing the [Mn₄O₃] oxidebridged trigonal pyramidal Mn₄ core that is one of the topologies consistent with recent EXAFS data on the native site,⁴ which has both short (~2.7 Å) and long (~3.3 Å) Mn...Mn separations. A major objective is to employ these model complexes to obtain structural and mechanistic insights into the interaction of the native cluster with its cofactors (Cl⁻, Br⁻, NO₃⁻, etc.), inhibitors (F⁻, NH₃, RNH₂, ROH), and substrate (H₂O);¹ we have shown, for example, that $[Mn_4O_3(O_2CMe)_4(dbm)_3]$ (1) readily reacts with a F^{-} source to give $[Mn_4O_3F(O_2CMe)_3(dbm)_3]^{3c}$ Understanding the means by which a Mn₄ cluster binds, deprotonates, and oxidizes H₂O molecules is the primary objective, and we are attempting to use model complexes to achieve this in a stepwise fashion that might allow intermediates to be identified and thus provide insights into how such a transformation might proceed. In the present work, we report that 1 will spontaneously react with H₂O under mild, nonforcing conditions leading to deprotonation of the latter and its incorporation into the core. This reaction represents a controlled activation of H2O and is proposed as a model system for the crucial first steps along the path to O₂ evolution.

The reactivity of **1** with H₂O and MeOH was conveniently monitored by ²H NMR spectroscopy using [Mn₄O₃(O₂CCD₃)₄-(dbm)₃] (1a); this avoids the complicating presence of dbm resonances and gives sharper resonances than ¹H NMR spectroscopy. In addition to the signal for CHDCl₂ impurity, the spectrum of **1a** at room temperature shows two signals at 36.8 and 66.1 ppm in a 3:1 integration ratio from the μ -O₂CCD₃ and unique μ_3 -O₂CCD₃ groups, respectively (Figure 1, top). Addition of distilled MeOH causes a decrease in these two signals and

Figure 1. ²H NMR spectrum at \sim 23 °C of complex **1a** in CD₂Cl₂ (top); spectrum resulting from addition of 10 equiv of MeOH (middle); spectrum resulting from addition of an excess (immiscible) of H₂O (bottom).

appearance of free CD₃CO₂H at \sim 3 ppm and a new resonance at 39.7 ppm (Figure 1, middle). Addition of more MeOH causes an increase in the latter two signals at the expense of the former two. These data suggest a site-specific ligand substitution of the unique acetate group to give [Mn₄O₃(OMe)(O₂CCD₃)₃(dbm)₃] (2a). Similarly, addition of an excess of distilled H₂O (only sparingly miscible in CD₂Cl₂) causes analogous spectral changes with a new resonance appearing at 39.5 ppm (Figure 1, bottom), again suggesting displacement of the unique μ_3 -CD₃CO₂⁻ group and possible formation of [Mn₄O₃(OH)(O₂CCD₃)₃(dbm)₃] (3a). Firm identification of these two products followed from their bulk isolation and structural characterization.

Complex 1 was dissolved in CH₂Cl₂ containing ~300 equiv of MeOH, the solvent removed in vacuo, the cycle repeated, and the residue again dissolved in CH₂Cl₂/MeOH; the product was precipitated with Et₂O, filtered, and dried in vacuo to give $[Mn_4O_3(OMe)(O_2CMe)_3(dbm)_3]$ (2) in ~50% yield (eq 1). With

$$[Mn_4O_3(O_2CMe)_4(dbm)_3] + MeOH \rightarrow$$

$$[Mn_4O_3(OMe)(O_2CMe)_3(dbm)_3] + MeCO_2H (1)$$

the identity of 2 established,^{5,6} its reaction with H₂O was found to provide a more convenient route to 3. Thus, 2 was twice treated to cycles of dissolution in CH2Cl2/MeCN (7:1) containing 30 equiv of H₂O, followed by precipitation of the solid with Et₂O. The final solid of $[Mn_4O_3(OH)(O_2CMe)_3(dbm)_3]$ (3) was obtained in 55-60% yield (eq 2).⁷

Indiana University

[‡] University of California at San Diego.

 ^{(1) (}a) Debus, R. J. Biochim. Biophys. Acta 1992, 1102, 269. (b) Manganese Redox Enzymes; Pecoraro, V. L., Ed.; VCH Publishers: New York, 1992.
(2) (a) Ruettinger, W. F.; Dismukes, G. C. Chem. Rev. 1997, 97, 1. (b)

Manchandra, R.; Brudvig, G. W.; Crabtree, R. Coord. Chem. Rev. 1995, 144, (3) (a) Wang, S.; Tsai, H.-L.; Folting, K.; Streib, W. E.; Hendrickson, D. N.; Christou, G. *Inorg. Chem.* **1996**, *35*, 7578. (b) Wang, S.; Tsai, H.-L.;

Hagen, K. S.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1994, 116, 8376. (c) Wemple, M. W.; Adams, D. M.; Folting, K.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc. 1995, 117, 7275

^{(4) (}a) DeRose, V. J.; Mukerji, I.; Latimer, M. J.; Yachandra, V. K.; Sauer, K.; Klein, M. P. J. Am. Chem. Soc. **1994**, 116, 5239 and references therein. (b) Yachandra, V. K.; DeRose, V. J.; Latimer, M. J.; Mukerji, I.; Sauer, K.; Klein, M. P. Science 1993, 260, 675.

⁽⁵⁾ Dried solid analyzed as $2^{\cdot1/4}$ CH₂Cl₂. Anal. Calcd (found): C, 53.8 (53.8); H, 4.1 (4.0). Crystal data for $2^{\cdot2}$ CH₂Cl₂; monoclinic, $P2_1/c$, a =(33.6), f1, 4.7 (4.6), Crystal data for 2°2CH2CH3C, honochink, P_2/c , a = 14.278(5) Å, b = 15.108(6) Å, c = 27.500(12) Å, $\beta = 100.51(2)^\circ$, Z = 4, V = 5832 Å³, $d_{calc} = 1.498$ g cm⁻³, T = -171 °C; R(F) = 9.82 and $R_w(F) = 8.77\%$ using 5203 unique reflections with $F > 3\sigma(F)$. (6) Pure **2a** was made in a similar fashion from **1a**. The ²H NMR spectrum

of 2a exhibits only the 39.7 ppm resonance, confirming 2a as the product of the methanolysis in Figure 1, middle.

⁽⁷⁾ Pure 3a was made in a similar fashion from 2a. The ²H NMR spectrum of 3a exhibits only the 39.5 ppm resonance, confirming 3a as the product of the hydrolysis in Figure 1, bottom.

Figure 2. ORTEP representations of complexes 2 (top) and 3 (bottom) at the 50% probability level.

 Table 1.
 Comparison of [Mn₄O₃X]⁶⁺ Core Distances in
 Complexes $1-3^{\bar{a}}$

	1	2	3
Mn ^{III} Mn ^{IV}	2.799(12)	2.798(6)	2.789(2)
Mn ^{III} Mn ^{III}	3.201(12)	3.132(26)	3.122(17)
Mn ^{III} -O _X	2.299(21)	2.182(23)	2.215(39)
Mn ^{III} -O _b	1.933(21)	1.936(23)	1.930(25)
Mn ^{IV} -O _b	1.867(9)	1.862(9)	1.862(12)

^{*a*} Averaged using $C_{3\nu}$ virtual symmetry. ^{*b*} Numbers in parentheses are the greatest deviations of single values from the mean. ^c Mn(1) is Mn^{IV}; Mn(2), Mn(3), and Mn(4) are Mn^{III}; $O_X = O$ of μ_3 -MeCO₂⁻, MeO⁻, or HO⁻; $O_b = \mu_3 - O^{2-}$ ions.

$$[Mn_4O_3(OMe)(O_2CMe)_3(dbm)_3] + H_2O \rightarrow$$
$$[Mn_4O_3(OH)(O_2CMe)_3(dbm)_3] + MeOH (2)$$

The structures of 2^5 and 3^8 (Figure 2) show great similarity to that of **1** except that the μ_3 -O₂CMe⁻ is replaced by μ_3 -OMe⁻ or OH⁻ groups: in each case there is a Mn^{III}₃Mn^{IV} trigonal pyramid whose Mn^{III}₃ basal face is capped by a μ_3 -X⁻ (X⁻ = O₂CMe⁻, OMe⁻, OH⁻) group and its other faces by μ_3 -O²⁻ to give a highly distorted cubane $[Mn_4O_3X]^{6+}$ core. Interatomic distances (Table 1) confirm retention of both "short" (~2.8 Å) and "long" (3.1– 3.2 Å) Mn...Mn separations in 2 and 3; indeed, variation of $X^$ causes almost insignificant changes to the structure of the core. Note that the $[Mn_4O_3(OH)]^{6+}$ core of **3** is different from the more symmetric $[Mn_4O_4]^{6+}$ cubane core of $[Mn_4O_4(O_2PPh_2)_6]$ where all Mn...Mn separations are in the range 2.904–2.954 Å.⁹ The presence of hydrogen bonding in **3** between the μ_3 -OH⁻ and an

Et₂O group (O...O = 2.951(16) Å) confirms the protonated nature of O(8). The X⁻ groups in 1-3 lie on the three Mn^{III} Jahn-Teller elongation axes, and the resulting enhanced lability undoubtedly facilitates the site-specific substitution at this position. The process described in eq 1 is driven by the large excess (\sim 300 equiv) of MeOH and the resulting shorter, stronger Mn^{III}-O_X bonds (table) even though the acidity of MeOH ($pK_a = 15.5$) is much less than $MeCO_2H$ (4.8). The conversion in eq 2 is favored by the relative acidity of MeOH ($pK_a = 15.5$) versus H₂O (pK_a = 14) and such a large excess of H_2O is not necessary. We currently believe the substitutions occur via an intermediate whereby the μ_3 -X⁻ (X⁻ = MeCO₂⁻ or MeO⁻) group becomes μ_2 -X⁻ as the incoming group binds to one Mn^{III} site, followed by loss of XH as the new group is deprotonated and adopts a μ_3 mode.

Magnetic susceptibility data (2.00-300 K) on powdered samples of **2** and **3** were fit to the appropriate theoretical χ_m vs T expression for a C_{3v} symmetry $\hat{Mn}^{III}_{3}Mn^{IV}$ unit,^{3a,10} and the fitting parameters, in the format (J_{34}, J_{33}, g) , were -31.8 cm^{-1} , $+9.6 \text{ cm}^{-1}$, and 1.92 for 2 and -32.7 cm^{-1} , $+11.9 \text{ cm}^{-1}$, and 2.02 for 3. These values are very similar to those for 1(-33.9) cm^{-1} , +5.4 cm^{-1} , and 1.94) and other [Mn₄O₃X] (X⁻ = Cl⁻, Br⁻, F⁻) complexes.^{3,10} Complexes 1–3 thus all have $S = \frac{9}{2}$ ground states.

Complexes 1-3 display quasi-reversible one-electron reductions at 0.39, 0.16, and 0.16 V vs SCE, respectively, when examined by DPV and CV in CH₂Cl₂ and quasi-reversible oxidations at 1.55, 1.22, and 1.26V. These changes with X^- are consistent with the relative basicities of the latter as gauged by the above pK_a values and show that HO⁻ and MeO⁻ facilitate access to a higher oxidation state compared with MeCO₂⁻. The conversion of free H_2O into a bound OH^- in 3 without change to the Mn₄O₃ core and via H⁺ transfer to a MeCO₂⁻ or MeO⁻ leaving group could parallel a similar transformation following (or accompanying) a S_n -to- S_{n+1} oxidation in the WOC, where according to recent theories both the electron and H⁺ transfers are to the Y_z tyrosine radical.^{11,12} The hydrogen-bonded Et₂O group may also be considered a model of how a second H₂O molecule could interact with the OH⁻ to give a [H₂O···HO⁻] pair poised for subsequent multiple deprotonations and oxidative coupling to form O₂;¹³ such a system would also be consistent with data showing both a slowly and rapidly exchanging substrate molecule at the native site.¹⁴ Current studies thus include isolation of 1 (or related species) at the 4Mn^{III} oxidation level to study H₂O binding and concomitant oxidation/deprotonation steps and deprotonation of 3 either alone or as a consequence of an oxidation to the 2Mn^{III},2Mn^{IV} level.

Acknowledgment. This work was funded by NIH Grants GM 39083 (G.C.) and HL 13652 (D.N.H.).

Supporting Information Available: Data collection and refinement details and listings of atomic coordinates and thermal parameters for complexes 2 and 3 and fitting of $\chi_m T$ vs T data for 2 and 3 (46 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA9730573

(13) We have, in fact, been able to crystallize 3 with the OH⁻ hydrogenbonded to two H2O molecules instead of one Et2O; however, the quality of the crystallographic data is currently very poor

(14) Messinger, J.; Badger, M.; Wydrzynski, T. Proc. Natl. Acac. Sci. U.S.A. 1995, 92, 3209,

⁽⁸⁾ Dried solid analyzed as 3-Et₂O-1.7CH₂Cl₂. Anal. Calcd (found): C, 50.4 (50.4); H, 4.2 (4.2). Crystal data for 3.0.9Et₂O.1.1CH₂Cl₂: monoclinic, $P2_{1/c}$, a = 14.478(5) Å, b = 14.910(5) Å, c = 26.644(8) Å, $\beta = 101.00(2)^{\circ}$, $Z = 4, V = 5646 \text{ Å}^3, d_{\text{calc}} = 1.518 \text{ g cm}^{-3}, T = -171 \text{ °C}; R(F) = 7.84 \text{ and} R_w(F) = 7.57\%$ using 4836 unique reflections with $F > 3\sigma(F)$.

⁽⁹⁾ Ruettinger, W. F.; Campana, C.; Dismukes, G. C. J. Am. Chem. Soc. 1997, 119, 6670.

 ⁽¹⁰⁾ Hendrickson, D. N.; Christou, G.; Schmitt, E. A.; Libby, E.; Bashkin, J. S.; Wang, S.; Tsai, H.-L.; Vincent, J. B.; Boyd, P. D. W.; Huffman, J. C.; Folting, K.; Li, Q.; Streib, W. E. J. Am. Chem. Soc. 1992, 114, 2455.
(11) (a) Tang, X.-S.; Randall, D. W.; Force, D. A.; Diner, B. A.; Britt, R. D. J. Am. Chem. Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, J. C.; D. W.; Huffman, S. C. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, J. C.; D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, D. W.; Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, J. Huffman, Soc. 1996, 118, 7638. (b) Gilchrist, M. L.; Ball, J. A.; Randall, J. Huffman, J. L.; Huffman, J. L.; Huffman, J. L.; Huffman, J. Huffman, J. L.; Huffman, J. L.; Huffman, J. L.; Huffman,

D. W.; Britt, R. D. Proc. Natl. Acad. Sci. 1995, 92, 9545.

D. W., BIRL, K. D. Froc. Vall. Acad. Sci. 1995, 92, 9545.
(12) (a) Tommos, C.; Tang, X.-S.; Warnecke, K.; Hoganson, C. W.; Styring, S.; McCracken, J.; Diner, B. A.; Babcock, G. T. J. Am. Chem. Soc. 1995, 117, 10325.
(b) Hoganson, C. W.; Lydakis-Simantiris, X.; Tang, X.-S.; Tommos, C.; Warnecke, K.; Babcock, G. T.; Diner, B. A.; McCracken, J.; Stratege S. Photener, Ber. 1085, 46 (27). Styring, S. Photosyn. Res. 1995, 46, 177.