1427

Bromide Incorporation into a High-oxidation-state Manganese Aggregate, and Reversible Redox Processes for the $[Mn_4O_3X(OAc)_3(dbm)_3]$ (X = CI, Br) Complexes

Sheyi Wang, # Hui-Lien Tsai, b William E. Streib, a George Christou* a and David N. Hendrickson* b

^a Department of Chemistry and the Molecular Structure Center, Indiana University, Bloomington, IN 47405, USA ^b Department of Chemistry, 0506, University of California at San Diego, La Jolla, CA 92093-0506, USA

Treatment of $[Mn_4O_2(OAc)_6(py)_2(dbm)_2]$ (dbmH = dibenzoylmethane) with either NBuⁿ₄Br in hot MeCN or Me₃SiBr in CH₂Br₂ leads to the 3Mn^{III}, Mn^{IV} cubane complex $[Mn_4O_3Br(OAc)_3(dbm)_3]$ **3**, the initial example of Br⁻ bridging high-oxidation-state (\geq III) Mn ions; in addition, **3** and its Cl⁻ analogue display similar and reversible redox processes and similar magnetic exchange interactions, observations of significant biological relevance to the photosynthetic water-oxidation enzyme.

Our interest in the detailed study of Mn carboxylate chemistry¹ is stimulated in part by the occurrence of a tetranuclear Mn aggregate at the photosynthetic water-oxidation centre (WOC) and the adoption by the latter of various oxidation levels (termed S_n states; in order of increasing oxidation level, n = -1 to 4).² One intriguing property of the WOC from an inorganic viewpoint is its Cl- requirement for activity.³ It has been suggested that Cl⁻ may be ligated to the Mn, or that it may be bound to nearby Ca2+, involved in charge neutralization, or some other function not involving Mn-binding. However, some crucial recent evidence does indicate Mnhalide linkages.⁴ In the absence of Cl⁻, an abnormal S_2 state of the WOC is formed and advancement to S₃ is blocked.⁵ Also intriguing is the observation that Br⁻ can be substituted for Cl- in Cl--depleted systems with major retention of activity;6 thus, whatever the function of Cl- may be, it appears that it can also be carried out by Br-. However, isostructural polynuclear Mn complexes containing Cl⁻/Br⁻ have unfortunately not been available to date to probe this important dual-halide question.

Recently, we reported the pivotal role of Cl⁻ in triggering the conversion of $[Mn_4O_2(OAc)_6(py)_2(dbm)_2]$ **1** into $[Mn_4O_3Cl(OAc)_3(dbm)_3]$ **2** (dbmH = dibenzoylmethane, py = pyridine).⁷ The latter (3Mn^{III}, Mn^{IV}) is a potential model for the WOC S₂ state^{1,2} and possesses a $[Mn_4O_3Cl]^{6+}$ cubane-like core with a μ_3 -Cl⁻ atom. The need for Cl⁻ in generating and stabilizing this unique type of unit at the Mn^{III}₃Mn^{IV} level has potential biological significance and immediately begged the question of whether the Br⁻ analogue could be prepared, and if so, what might be the resulting change, if any, in structural and physicochemical properties. Since higher oxidation state (\geq III) Mn chemistry with Br⁻ is extremely rare owing to redox instability,⁸ we did not anticipate this objective to be a trivial one. However, we herein report the successful preparation of [Mn₄O₃Br-(OAc)₃(dbm)₃] **3**. In addition, we report that both **2** and **3** can support reversible redox processes at essentially identical potentials and that they have near-identical magnetochemical properties; these observations are considered to be of significant biological relevance.

After a number of unsuccessful attempts, the following procedures were developed. To a filtered, brown solution of **1** in hot MeCN was added solid NBuⁿ₄Br. The stirred, redbrown solution began to deposit red-brown microcrystals within minutes. The solution was cooled to room temperature and the product $[Mn_4O_3Br(OAc)_3(dbm)_3]$ **3** was collected by filtration; the yield was 24% based on dbm⁻. A higher yield may be obtained in CH₂Br₂ solution employing Me₃SiBr as the Br⁻ source; treatment of a CH₂Br₂ solution of complex **1** with *ca*. 1.5 equiv. of Me₃SiBr gave a red-brown solution

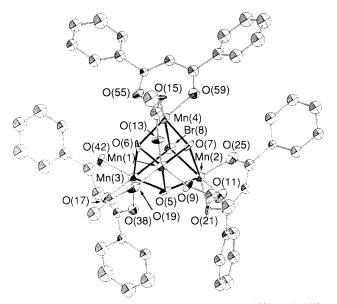


Fig. 1 ORTEP representation of complex 3 at the 50% probability level. Selected bond distances (Å) and angles (°): $Mn(1)\cdots Mn(2)$, 2.804(4): $Mn(1)\cdots Mn(3)$, 2.786(3); $Mn(1)\cdots Mn(4)$, 2.793(4); $Mn(2)\cdots Mn(3)$, 3.274(4); $Mn(3)\cdots Mn(4)$, 3.285(4); $Mn(2)\cdots Mn(4)$, 3.286(4); Mn(2)-Br(8), 2.802(3); Mn(3)-Br(8), 2.807(3); Mn(4)-Br(8), 2.799(3); O(5)-Mn(1,2,3), 1.856(11), 1.918(13), 1.915(12), respectively; O(6)-Mn(1,3,4), 1.871(12), 1.947(12), 1.937(12), respectively; O(7)-Mn(1,2,4), 1.857(12), 1.950(12), 1.915(11), respectively; Mn(2)-O(11), 2.168(13); Mn(3)-O(17), 2.174(12); Mn(4)-O(15), 2.148(12); Mn(2)-Br(8)-Mn(3), 71.43(9); Mn(2)-Br(8)-Mn(4), 71.83(9); Mn(1)-O(5)-Mn(3), 95.3(5); Mn(2)-O(5)-Mn(3), 117.4(6); Mn(1)-O(6)-Mn(3), 93.7(6); Mn(1)-O(6)-Mn(4), 94.3(5); Mn(3)-O(6)-Mn(4), 115.5(6); Mn(1)-O(7)-Mn(4), 95.9(5); Mn(2)-O(7)-Mn(4), 116.4(5).

which, after filtration, was layered with Et₂O. After several days, black crystals of 3 were collected in 55% yield.† The structure[‡] of **3** (Fig. 1) comprises an Mn_4 pyramid with Mn^{1V} atom Mn(1) at the apex and three Mn^{III} atoms at the base; these assignments are based on structural parameters and the observation of Jahn-Teller elongations at Mn(2)-Mn(4). Each vertical face is bridged by a μ_3 -O²⁻ atom [O(5), O(6) and O(7)] and the basal plane is bridged by the μ_3 -Br⁻ atom Br(8). Peripheral ligation is provided by three bridging AcO- and three chelating dbm⁻ groups. Complex 3 is thus very similar to 2^7 and the two structures are essentially superimposable, except for the Mn^{III}-Br bonds (av 2.803 Å) being longer than the Mn^{III}-Cl bonds (av 2.650 Å). Complex 3 is the first example of Br- in a complex containing a Mn^{IV} ion and the first example of Br- bridging Mn^{III} centres; it thus provides important and hitherto-lacking precedence for the possibility that Cl- and Br- in the WOC may be directly attached to

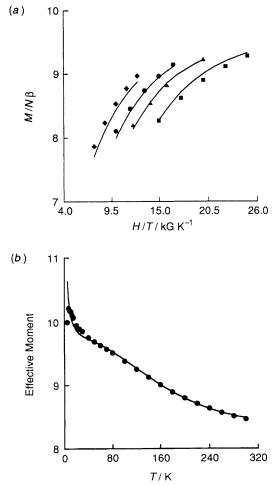
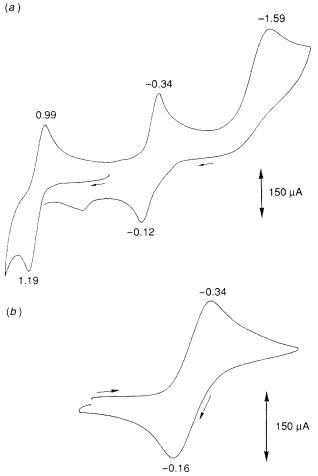


Fig. 2 Plot of μ_{eff} per molecule *vs.* temperature (*b*) for a polycrystalline sample of **3** maintained at 10.0 kG. The solid line represents a least-squares fit of the data to the previous⁹ model. In (*a*) are shown plots of reduced magnetization (*M*/N β) *vs. H*/*T* for a Vaseline-mull of polycrystalline complex **3**. Four isothermal data sets are shown (**1**, 2.0 K; **4**, 2.5 K; **6**, 3.0 K; **4**, 0 K); for each, the field is in the range 30.0–50.0 kG. All data were fit, to give the solid lines, for a S = 9/2 ground state. (1 G = 10⁻⁴ T).


high-oxidation-level Mn aggregates at S_2 and without the Brcausing any structural perturbation *vis-à-vis* the Cl⁻ structure.

Variable-temperature solid-state magnetic-susceptibility studies on 3 show that the effective magnetic moment, μ_{eff} , per Mn₄ molecule steadily rises from 8.47 μ_B at 300 K to 10.2 μ_B at 7.01 K (Fig. 2). Fitting of the data to the theoretical susceptibility equation derived previously⁹ gave J_1 (Mn^{III}–Mn^{IV}) = -28.8 cm^{-1} and J_2 (Mn^{III}-Mn^{III}) = +6.80 \text{ cm}^{-1}; these values are similar to those for 2 ($J_1 = -33.4 \text{ cm}^{-1}$, $J_2 = +5.1 \text{ cm}^{-1}$) and similarly yield an S = 9/2 ground state. The S = 9/2 ground state for 3 was further substantiated by collecting variablefield (30-50 kG) magnetization data at 2.0, 2.5, 3.0 and 4.0 K. These data were least-squares fit by a full-matrix diagonalization approach to a S = 9/2 ground state with g = 2.1 and D =-0.45 cm⁻¹. It is thus clear that substitution of Cl⁻ with Br⁻ has a minimal effect on the electronic structure. This is consistent with our detailed analysis9 of magnetic interactions within the [Mn₄O₃Cl]⁶⁺ core where it is concluded that spin-frustration effects are operative and that the antiferromagnetic J_1 interaction dominates J_2 leading to parallel alignment of the Mn^{III} spins and a consequent S = 9/2 ground state. The Cl--to-Br- substitution does not affect the dominant J_1 exchange pathway and thus has an insignificant effect on the observed magnetic properties.

Particularly surprising, but very welcome, was the observation that complexes 2 and 3 both support reversible redox processes, in stark contrast to other known $[Mn_4O_3Cl]^{6+}$

[†] Among the many problems encountered before a method for obtaining pure **3** was developed was the serious contamination of **3** with **2** if CH_2Cl_2 was employed as the reaction solvent.

[‡] The X-ray structure was performed on a solvent-free crystal from the NBuⁿ₄Br/MeCN method. The Me₃SiBr/CH₂Br₂ method gives samples containing lattice CH₂Br₂ and Et₂O molecules that are slowly lost from filtered crystals. *Crystal data*: C₅₁H₄₂O₁₅BrMn₄, monoclinic, P_{21}/n , T = -155 °C, a = 13.644(2), b = 22.190(4), c = 16.548(3) Å, $\beta = 106.64(1)^\circ$, V = 4800.31 Å³, Z = 4, $6^\circ \le 2\theta \le 45^\circ$, 6295 unique, 2809 observed reflections, $I > 2.33\sigma(I)$. Only Mn, Br and O atoms were refined anisotropically; other non-hydrogen atoms were refined isotropically. Hydrogen atoms were included as fixed contributors in calculated positions; final $R(R_w) = 7.37$ (6.89)%. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 3 (*a*) The CV of complex **2** in CH_2Cl_2 with $NBu^n_4PF_6$ as the supporting electrolyte. The scan rate was 100 mV s⁻¹. (*b*) First reduction process. The CV of complex **3** is extremely similar.

complexes.⁹ The cyclic voltammograms (CV) and differential pulse voltammograms (DPV) of **2** and **3** are extremely similar;§ both complexes show a reversible oxidation at potentials of (in the format **2/3**) 1.09/1.06 V and a reversible reduction at -0.25/-0.23 V (Fig. 3). Both complexes also show an irreversible reduction at $E_P = -1.5$ to -1.6 V. The reversible features define the three-membered redox series of eqn. (1).

$$[]^{+} \xrightarrow{1.09 \text{ V}} [\text{Mn}_4\text{O}_3\text{Cl}(\text{OAc})_3(\text{dbm})_3] \xrightarrow{-0.25 \text{ V}} []^{-} (1)$$

The mono-cation $(2Mn^{III}, 2Mn^{IV})$ may correspond to the WOC S₃ state, and Mn₄ complexes at this average oxidation are thus important to access; they are currently limited to $[Mn_4O_4(tphpn)_2]^{4+}$ and $[Mn_4O_4(tmdp)_2(H_2O)_2]^{4+}$ which have a 'dimer of dimers' structure.¹⁰ Similarly, the monoanion $(4Mn^{III})$ may correspond to the S₁ state and thus will be important to study; several Mn₄ species at this level are known,¹¹⁻¹⁵ with the most characterized to-date being species possessing an $[Mn_4(\mu_3-O)_2]$ core with a planar or 'butterfly' Mn₄ disposition. The anion of **3** would have structural parameters and a 'short' (*ca.* 2.8 Å): 'long' (*ca.* 3.3 Å) ratio (1:1) of Mn···Mn spearations more consistent with the most recent EXAFS data than currently known Mn^{III}₄ complexes.^{4.16} For all the above reasons, the generation and crystallization of **3**⁺ and **3**⁻ are currently being sought.

In summary, two important developments are being reported: (i) the first example of Br^- bridging Mn^{III} centres,

with the resulting establishment of a precedence for Cl^- and Br^- being able to support similar higher oxidation state Mn chemistry; and (*ii*) substitution of Br^- for Cl^- can occur with insignificant changes to the structural parameters, the electronic structure or the redox potentials. A prototype pair of isostructural complexes is thus now available to rationalize the retention of water oxidation activity by the WOC when Cl^- is replaced by Br^- .

Received, 27th May 1992; Com. 2/02749F

References

- 1 G. Christou, Acc. Chem. Res., 1989, 22, 328.
- Govindjee, T. Kambara and W. Coleman, Photochem. Photobiol., 1985, 42, 187; G. C. Dismukes, Photochem. Photobiol., 1986, 43, 199; G. Renger, Angew. Chem., 1987, 99, 660; Angew. Chem., Int. Ed. Engl., 1987, 26, 643; G. W. Brudvig, J. Bioenerg. Biomembr., 1987, 19, 91; G. T. Babcock, in New Comprehensive Biochemistry, ed. J. Amesz, Elsevier, Dordrecht 1987, vol. 15, pp. 125–158; J. Vincent and G. Christou, Adv. Inorg. Chem., 1989, 33, 197; K. Wieghardt, Angew. Chem., Int. Ed. Engl., 1989, 28, 1153; H. H. Thorp and G. W. Brudvig, New J. Chem., 1991, 15, 479; G. W. Brudvig, H. H. Thorp and R. H. Crabtree, Acc. Chem. Res., 1991, 24, 311; V. L. Pecoraro, Photochem. Photobiol., 1988, 48, 249.
- C. Critchley, Biochim. Biophys. Acta, 1985, 811, 33; C. Preston and R. J. Pace, Biochim. Biophys. Acta, 1985, 810, 388; C. Critchley and A. M. Sargeson, FEBS Lett., 1984, 177, 2; W. J. Coleman, Govindjee and H. S. Gutowsky, Biochim. Biophys. Acta, 1987, 894, 43 and 453; T. Ono, J.-L. Zimmerman, Y. Inoue and A. W. Rutherford, Biochim. Biophys. Acta, 1986, 850, 193; W. J. Coleman and Govindjee, Photosynth. Res., 1987, 13, 199; W. F. Beck and G. W. Brudvig, Chem. Scr., 1988, 28, 93.
- 4 M. P. Klein, V. K. Yachandra, V. J. DeRose, I. Mukerji, M. J. Latimer and K. Sauer, J. Inorg. Biochem., 1991, 43, 363.
- 5 T. Ono and Y. Inoue, *Biochim. Biophys. Acta*, 1985, 806, 331;
 P. H. Homann, H. Gleiter, T. Ono and Y. Inoue, *Biochim. Biophys. Acta*, 1986, 850, 10.
- 6 P. H. Homann, *Plant Physiol.*, 1988, 88, 194; B.-D. Husu, J.-Y. Lee and R.-L. Pan, *Biochim. Biophys. Acta*, 1987, 890, 89; T. Ono, H. Nakayama, H. Gleiter, Y. Inoue and A. Kawamor, *Arch. Biochem. Biophys.*, 1987, 256, 618; P. M. Kelley and S. Izawa, *Biochim. Biophys. Acta*, 1978, 502, 198.
- 7 S. Wang, K. Folting, W. E. Streib, E. A. Schmitt, J. K. McCusker, D. N. Hendrickson and G. Christou, *Angew. Chem.*, 1991, **103**, 314; *Angew. Chem.*, *Int. Ed. Engl.*, 1991, **30**, 305.
- 8 We are aware of only a few well-characterized species, all possessing terminal Mn^{III}-Br linkages: See R. J. Morris and G. S. Girolami, *Organometallics*, 1987, 6, 1815; P. A. Daugherty, J. Glerup, P. A. Goodson, D. J. Hodgson and K. Michelsen, *Acta Chem. Scand.*, 1991, 45, 244; P. S. Bryan and J. C. Dabrowiak, *Inorg. Chem.*, 1975, 14, 297.
- 9 D. N. Hendrickson, G. Christou, E. A. Schmitt, E. Libby, J. S. Bashkin, S. Wang, H.-L. Tsai, J. B. Vincent, P. D. W. Boyd, J. C. Huffman, K. Folting, Q. Li and W. E. Streib, J. Am. Chem. Soc., 1992, 114, 2455.
- 10 M. K. Chan and W. H. Armstrong, J. Am. Chem. Soc., 1991, 113, 5055; M. Suzuki, Y. Hayashi, K. Munezawa, M. Suenaga, H. Senda and A. Uehara, Chem. Lett., 1991, 1929.
- 11 J. B. Vincent, C. Christmas, H.-R. Chang, Q.Li, P. D. W. Boyd, J. C. Huffman, D. N. Hendrickson and G. Christou, J. Am. Chem. Soc., 1989, 111, 2086.
- 12 E. Libby, J. K. McCusker, E. A. Schmitt, K. Folting, D. N. Hendrickson and G. Christou, *Inorg. Chem.*, 1991, 30, 3486.
- 13 M. Mikuriya, Y. Yamato and T. Tokii, Chem. Lett., 1991, 1429.
- 14 S. K. Chandra and A. Chakravorty, Inorg. Chem., 1991, 30, 3795.
- 15 H. H. Thorp, J. E. Sarneski, R. J. Kulawiec, G. W. Brudvig, R. H. Crabtree and G. C. Papaefthymiou, *Inorg. Chem.*, 1991, 30, 1153.
- 16 V. K. Yachandra, R. D. Guiles, A. E. McDermott, J. L. Cole, R. D. Britt, S. L. Dexheimer, K. Sauer and M. P. Klein, *Biochemistry*, 1987, 26, 5974; G. N. George, R. C. Prince and S. P. Cramer, *Science*, 1989, 243, 789; R. D. Guiles, V. K. Yachandra, A. E. McDermott, J. L. Cole, S. L. Dexheimer, R. D. Britt, K. Sauer and M. P. Klein, *Biochemistry*, 1990, 29, 486; J. E. Penner-Hahn, R. M. Fronko, V. L. Pecoraro, C. F. Yocum, S. D. Betts and N. R. Bowlby, *J. Am. Chem. Soc.*, 1990, 112, 2549.

[§] Electrochemical measurements were performed with a glassy carbon working electrode, a Pt wire auxiliary, and a SCE (saturated calomel electrode) reference electrode; potentials are referenced to the ferrocene–ferrocenium couple under the same conditions.