Variation in the Electron Count and Ground State of $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_4]$ (R = Me or Ph) by Metal Substitution and Redox Changes: Preparation and Properties of $[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4]\cdot 4H_2O\cdot 2MeCO_2H$ and $[NPr^n_4]$ $[Mn_{12}O_{12}(O_2CPh)_{16}(H_2O)_4]\cdot H_2O$

Ann R. Schake, ^a Hui-Lien Tsai, ^b Nadine de Vries, ^a Robert J. Webb, ^b Kirsten Folting, ^a David N. Hendrickson*^b and George Christou*^a

Department of Chemistry and the Molecular Structure Center, Indiana University, Bloomington, IN 47405, USA
Department of Chemistry, University of California at San Diego, La Jolla, CA 92093-0506, USA

As a means of varying the electron count of complexes $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_4]$ (**1**; R = Me or Ph), the aggregates $[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4]$ **2** and $[NPr^n_4]$ $[Mn_{12}O_{12}(O_2CPh)_{16}(H_2O)_4]$ **3** have been prepared; magnetochemical measurements confirm that the unusual properties of **1** can be significantly altered by 'conversion' to **2** and **3**.

An important current area of research is the development of synthetic methodologies for molecular species possessing large spin ground states, and their employment as building blocks to prepare new molecular ferromagnets.^{1–3} A number of such molecular ferromagnets are currently known that consist of organic² or inorganic³ molecular units. The challenge is to access suitable molecules and spatially arrange them in an appropriate manner; also important would be the ability to alter in a controllable manner the spin of the building-block molecule without changing its structure and thus permit access to a family of related materials with differing properties suitable for perhaps different applications. We recently reported that magnetization measurements (10.0, 30.0 and 48.0 kG) and magnetic susceptibility (10.0 kG); 5-300.8 K) data indicate an S = 14 ground spin state for [Mn₁₂O₁₂(O₂CPh)₁₆(H₂O)₄] 1a;⁴ Alternating current susceptometry data at near to zero field indicate an S = 10 ground state for $[Mn_{12}O_{12}(O_2CMe)_{16}(H_2O)_4]$ 1b.⁵ Given the potential of such aggregates as building blocks to molecular ferromagnets, we have sought to vary their ground states by altering their electron count (8Mn^{III}, 4Mn^{IV}; 44 d electrons) and herein report the successful attainment of this objective via two means: partial Fe¹¹¹ (d⁵)-for-Mn¹¹¹ (d⁴) substitution, and one-electron reduction.

To a stirred slurry of $Fe(O_2CMe)_2$ in 60% (v/v) MeCO₂H– H₂O were slowly added 0.39 equiv. of KMnO₄, followed by slow heating to 60 °C. The cooled solution was layered with acetone and, after several days, black crystals of $[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4]$ 2 as the $4H_2O\cdot 2MeCO_2H$ solvate were obtained in 85% yield based on Mn.† Crystals of 2·4H₂O·2MeCO₂H are isomorphous with 1b·4H₂O·2MeCO₂H,⁶ and the structure‡ (Fig. 1) confirms retention of the $[M_{12}O_{12}]^{16+}$ core. Interestingly, the Fe^{III} locations are

‡ Crystal data: C₃₆H₇₂O₅₆Fe₄Mn₈, M = 2063.82, tetragonal, $\overline{I4}$, a = b = 17.169(4), c = 12.258(3) Å, U = 3612.92 Å³, Z = 2, $D_c = 1.897$ g cm⁻³, $\lambda = 0.71069$ Å, T = -158 °C, $6 \le 2\theta \le 45^{\circ}$, $R(R_w) = 0.0768(0.0768)$ for 2506 unique reflections with $F > 3\sigma(F)$. The structure was solved by MULTAN and refined by full-matrix least squares. The acetic acid molecules are disordered between two positions that had refined occupancies of 0.5. All non-hydrogen atoms were refined anisotropically. Acetate hydrogen atoms were visible in a difference Fourier map and were included in the final refinement cycles in fixed, idealized positions. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

[†] The Fe is present in large excess. Numerous experiments varying $Mn(O_2CMe)_2$: Fe $(O_2CMe)_2$: KMnO₄ ratios have been performed; only for the described reaction have we been satisfied to-date that (*i*) pure product can be isolated, and/or (*ii*) product molecules with an essentially invariant and reproducible Fe : Mn ratio are obtained.

Fig. 1 The structure of complex 2. The peripheral ligands are de-emphasized for clarity and depicted as spheres of arbitrary size. Selected distances (Å): $Mn(1)\cdots Mn(1')$, 2.820(4); $Mn(1)\cdots Mn(1'')$, 2.938(4); $Mn(1)\cdots Mn(2)$, 2.773(3); $Mn(1)\cdots Fe(3)$, 3.478(3); $Mn(1)\cdots Fe(3'')$, 3.465(3); $Mn(2)\cdots Fe(3)$, 3.357(3); $Mn(2)\cdots Fe(3'')$, 3.446(3); Mn(1)-O(1), 1.883(10); Mn(1)-(O'), 1.924(9); Mn(1)-O(1''), 1.936(9); Mn(1)-O(2), 1.878(9); Mn(1)-O(3), 1.852(9); Mn(1)-O(4), 1.934(9); Mn(2)-O(2), 1.890(9); Mn(2)-O(3), 1.887(9); Mn(2)-O(5), 2.226(10); Mn(2)-O(6), 2.231(11); Mn(2)-O(8), 1.953(10), Mn(2)-O(10), 1.953(11); Fe(3)-O(2), 1.937(9); Fe(3)-O(3'), 1.925(9); Fe(3)-O(7), 2.037(10), Fe(3)-O(9), 2.025(10); Fe(3)-O(11), 2.035(10); Fe(3)-O(12), 2.097(10).

ordered, and are identifiable from metric parameters and the absence of Jahn-Teller distortions clearly present in **1a** and **1b**. Thus, Fe(3)-O bonds are in the narrow range 1.925(9)-2.097(10) Å [cf. 1.892(7)-2.178(9) Å at these sites in **1b**] whereas the Mn(2)-O bonds of **2** are in the range 1.887(9)-2.231(11) Å. Elemental analysis of products from multiple preparations indicate the actual Mn:Fe ratio to be ca. 7.64:4.36, suggesting some partial occupation of the Mn(2) sites by Fe^{III}.§ This additional Fe was observed in the Mössbauer spectrum at 300 K as a weak doublet [δ 0.405(10), ΔE_Q 1.061(2) mm s⁻¹] flanking the intense doublet [δ 0.416(2), ΔE_Q 0.459(4) mm s⁻¹] of Fe(3).

The cyclic voltammogram (CV) of **1a** in CH₂Cl₂ displays quasi-reversible oxidations and reductions at 0.79 and 0.06 V, respectively, vs. ferrocene. Treatment of **1a** in CH₂Cl₂ with 1 equivalent of NPr^a₄I followed by addition of EtO₂CMe-Et₂O (2:1) gave a precipitate of [NPr^a₄][Mn₁₂O₁₂(O₂CPh)₁₆-(H₂O)₄]·H₂O **3** in 74% yield. The PPh₄+ salt was prepared similarly using PPh₄I. Elemental analyses¶ and IR and NMR spectra are in agreement with the indicated formulation, and conductivity determinations in MeCN gave values of 97 and 107 ohm⁻¹ mol⁻¹ cm² for the Pr^a₄N⁺ and PPh₄+ salts,

¶ The analytical data for 3(C, H, N, Mn) and the PPh₄⁺ derivative (C, H, Mn) were satisfactory.

respectively, consistent with 1:1 electrolytes. The CV of 3 displayed two oxidations at the same potentials as for 1a. We are confident that the anion of 3 is the reduced version of 1a with no (major) structural change.

Variable-temperature magnetic susceptibility data have been recorded at 10.0 kG for powdered samples of complexes 2 and 3. For $2.4H_2O.2MeCO_2H$, the effective magnetic moment (μ_{eff}) per molecule steadily decreases from 10.66 μ_B at 300 K to 5.29 μ_B at 9.01 K, whereupon it begins to decrease more rapidly to 4.06 μ_B at 2.00 K (Fig. 2). This behaviour is consistent with an S = 2 ground state, with the low-temperature behavior most likely due to Zeeman and zero-field splitting effects. While much additional study is required to characterize fully the electronic structure of 2, the data obtained to date are clearly dramatically different from those for complex 1b (S = 10). For the latter, μ_{eff} for a powder sample at 10.0 kG slowly increases with decreasing temperature, reaching a maximum of 20.4 μ_B at ca. 10 K and then dropping rapidly at lower temperatures.5 The increased electron count of 2 (4MnIII, 4FeIII, 4MnIV; 48 d electrons) has thus led to a striking decrease in the spin of the ground state. This may be rationalized as arising from an increased contribution from antiferromagnetic exchange interactions and this is itself consistent with an increased electron count in the metal eg orbitals; for example, in isostructural Mn₄^{III} and Fe₄^{III} complexes, the former are known to exhibit weaker antiferromagnetic interactions than the latter,⁷ and Fe^{III}₂ species are almost always antiferromagnetically coupled.8 It is likely that the topological arrangement of metal ions in 1a, 1b,

[§] Multiple analyses (of different preparations) have yielded ranges for the metal content of Mn, 7.50–7.77 and Fe, 4.23–4.50. These are satisfyingly narrow ranges given the experimental errors inherent in metal analyses.

Fig. 2 Plots of effective magnetic moment per molecule versus temperature for powder samples in a 10.0 kG field for: () complex 1a. (\bigstar) complex 2·4H₂O·2MeCO₂H; (\Box) complex 3

2 and 3 leads to spin frustration⁹ and that this is also important in determining the spin of the ground state.

For complex 3, μ_{eff} per molecule slowly decreases from 12.10 μ_B at 300 K to 11.60 μ_B at 180 K, then slowly increases, reaching a maximum of 20.21 μ_B at 13.0 K, and finally decreases to 16.20 μ_B at 5.01 K (Fig. 2). This behaviour is similar to that observed for **1a** (S = 14) except that the latter displays larger μ_{eff} values, reaching a maximum of 23.22 μ_B at 10 K.⁴ Again, much detailed study will be necessary to fully characterize **3**, but it does appear to possess a lower spin ground state than **1a**. As for **2**, the proposed rationalization is that the addition of the extra electron in **3** (9Mn^{III}, 3Mn^{IV}; 45 d electrons) into an e_g orbital is increasing the antiferromagnetic contribution to the exchange interactions in the molecule.

In summary, it is clear that alterations to the electron count of $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_4]$ are indeed possible, by both metal replacement and redox changes, and that this leads to major changes in the spin of the ground state of the species. Further detailed study of complexes 1–3 and access to other $[Mn_xM_{12-x}O_{12}]$ (M = Fe^{III}, V^{III}, Cr^{III}, etc.) complexes are objectives of future work, as are the linking of these species to form one-, two- and three-dimensional extended arrays.

This work was supported by the National Institutes of Health (D. N. H.) and the National Science Foundation (G. C.) We thank the Dreyfus Foundation for a Teacher Scholar Grant (G. C.).

Received, 11th October 1991; Com. 1/05174A

References

- 1 Magnetic Molecular Materials, ed. D. Gatteschi, O. Kahn, J. S. Miller and F. Palacio, NATO ASI Series, Series E, vol. 198; Kluwer Academic, Dordrecht, 1991.
- 2 H. Iwamura, Pure Appl. Chem., 1986, 58, 187; 1987, 59, 1595, and references cited therein.
- 3 J. S. Miller, A. J. Epstein and W. M. Reiff, *Chem. Rev.*, 1988, 88, 201; *Acc. Chem. Res.*, 1988, 21, 114; W. E. Broderick, J. A. Thompson, E. P. Day and B. M. Hoffman, *Science*, 1990, 249, 401; J. M. Manriquez, G. T. Yee, R. S. McLean, A. J. Epstein and J. S. Miller, *Science*, 1991, 252, 1415, and references cited therein.
- 4 P. D. W. Boyd, Q. Li, J. B. Vincent, K. Folting, H.-R. Chang, W. E. Streib, J. C. Huffman, G. Christou and D. N. Hendrickson, J. Am. Chem. Soc., 1988, 110, 8537.
- 5 A. Caneschi, D. Gatteschi, R. Sessoli, A. L. Barra, L. C. Brunel and M. Guillot, J. Am. Chem. Soc., 1991, 113, 5873.
- 6 T. Lis, Acta Crystallogr., Sect. B, 1980, 36, 2042.
- 7 J. B. Vincent, C. Christmas, H.-R. Chang, Q. Li, P. D. W. Boyd, J. C. Huffman, D. N. Hendrickson and G. Christou, J. Am. Chem. Soc., 1989, 111, 2086; J. K. McCusker, J. B. Vincent, E. A. Schmitt, M. L. Mino, K. Shin, D. K. Coggin, P. M. Hagen, J. C. Huffman, G. Christou and D. N. Hendrickson, J. Am. Chem. Soc., 1991, 113, 3012.
- ♦ 8 S. M. Gorun and S. J. Lippard, *Inorg. Chem.*, 1991, 30, 1625, and references cited therein.
- 9 J. K. McCusker, E. A. Schmitt and D. N. Hendrickson in ref. 1; pp. 297–319.