Pressure dependence of the magnetic anisotropy in the single-molecule magnet Mn$_4$O$_3$Br(OAc)$_3$(dbm)$_3$

Andreas Sieber, Grégory Chaboussant, Roland Bircher, Colette Boskovic, and Hans U. Güdel
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3000 Bern 9, Switzerland

George Christou
Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA

Hannu Mutka
Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
(Received 9 September 2004; published 23 November 2004)

The anisotropy splitting in the ground state of the single-molecule magnet Mn$_4$O$_3$Br(OAc)$_3$(dbm)$_3$ is studied by inelastic neutron scattering as a function of hydrostatic pressure. This allows a tuning of the anisotropy and thus the energy barrier for slow magnetization relaxation at low temperatures. The value of the negative axial anisotropy parameter D_{cluster} changes from $-0.0627(1)$ meV at ambient pressure to $-0.0603(3)$ meV at 12 kbar pressure, and in the same pressure range the height of the energy barrier between up and down spins is reduced from 1.260(5) meV to 1.213(9) meV. Since the Mn—Br bond is significantly softer and thus more compressible than the Mn—O bonds, pressure induces a tilt of the single ion Mn$^{3+}$ anisotropy axes, resulting in the net reduction of the axial cluster anisotropy.

DOI: 10.1103/PhysRevB.70.172413 PACS number(s): 75.50.Xx, 75.30.Gw, 75.45.+j, 78.70.Nx

Single-molecule magnets (SMM) are presently the focus of a very intense research activity. SMM are molecules containing a finite number of exchange coupled magnetic ions, so-called spin clusters, which exhibit phenomena such as slow relaxation and quantum tunneling of the magnetization at low temperatures. They are the smallest known units that are potentially capable of storing a bit of information at cryogenic temperatures. An easy axis type magnetic anisotropy is an essential prerequisite for an energy barrier between up and down spins and thus for slow relaxation. The height of this barrier is determined by both the ground state S value and the size of the negative D_{cluster} value in the axial spin Hamiltonian

$$\hat{H}_{\text{axial}} = D_{\text{cluster}} \left(S_z^2 - \frac{1}{3} S(S + 1) \right).$$

For even and odd S values the barrier height is given by $|D_{\text{cluster}}|S^2$ and $|D_{\text{cluster}}|S^2$, respectively. Chemists have been able to assemble numerous spin clusters which show SMM features at the very lowest temperatures but the number of examples with blocking temperatures above 1 K is still rather limited. Among them is a family of tetranuclear manganese clusters with general formula Mn$_4$O$_3$X(OAc)$_3$(dbm)$_3$, where OAc$^-$ is the acetate ion and dbm$^-$ is the anion of dibenzoylmethane. They all exhibit SMM behavior with an energy barrier of the order of 1.25 meV.\(^1\) We report the first direct spectroscopic determination of the anisotropy splitting in a SMM under hydrostatic pressure. The molecule Mn$_4$O$_3$Br(OAc)$_3$(dbm)$_3$ (Mn$_4$) belongs to the above family, and its molecular structure is shown in Fig. 1(a).

The molecule has a Mn$^{4+}$(Mn$^{3+}$)$_3$(μ$_3$-O)$_3$(μ$_3$-Br)$_3$ core with a distorted cubane geometry, which is schematically depicted in Fig. 1. The molecular point symmetry is approximately C_{3v} with the C_3 axis passing through the Mn$^{4+}$ and Br$^-$ ions [Fig. 1(b)].\(^3\) We correlate the pressure dependence of the anisotropy splitting with pressure induced changes in the structure and identify the dominant terms and factors which govern the anisotropy splitting and thus the barrier height.

Inelastic neutron scattering (INS) is the most direct technique to measure anisotropy splittings in SMMs in the absence of an external magnetic field. Among others, anisotropy parameters have thus been obtained for the prototype SMMs Mn$_{12}$-acetate\(^4\) and Fe$_3$O$_6$(OH)$_2$(tacn)$_5^{2+}$ (Ref. 5) as well as four members of the Mn$_4$ cubane family including the title compound.\(^2\)

The present measurements were carried out on a partially deuterated (acetate 99%) sample with composition Mn$_4$O$_3$Br(d$_3$-OAc)$_3$(dbm)$_3$ using the time-of-flight spectrometer IN5 at the Institut Laue Langevin (ILL) in Grenoble. The sample was prepared according to Ref. 6. For pressures of 0, 3, and 5 kbar about 2 g of polycrystalline sample placed in a standard ILL continuously loaded high-pressure cell with He as the pressure transmitting medium were used. For 12 kbar the standard ILL high-pressure clamped cell was employed with about 0.3 g of sample. Neutron wavelengths of 7.5 Å (0 to 12 kbar) and 8.5 Å (0 to 5 kbar) were used, corresponding to instrumental resolutions of 32 and 19 μeV, respectively. The data treatment involved the calibration of the detectors by means of a spectrum of vanadium metal.

Experimental results for 0, 5, and 12 kbar at 18 K are shown in Fig. 2(a). At this temperature all the ground state levels have some population. At all pressures four well resolved inelastic peaks, labeled I–IV, are observed on both the energy loss and gain side, corresponding to positive and
D were determined: S = 9/2 with the first excited state outside the range of our experiment. The trigonal symmetry coupling in Mn₄, thus leading to a ground state, is thus given by

\[\hat{H}_{\text{ani}} = D_{\text{cluster}} \left(\frac{\hat{S}_z^2}{3} - \frac{1}{3}S(S+1) \right) + B_4^{d\ominus} \hat{O}_4^{\ominus} + E(\hat{S}_x^2 - \hat{S}_y^2), \]

where \(\hat{O}_4^{\ominus} = 35\hat{S}_z^4 - [30S(S+1)-25]\hat{S}_z^2 - 6S(S+1) + 3S^2(S+1)^2. \)

From the data in Ref. 2 the following parameter values at 18 K were determined: \(D_{\text{cluster}} = -0.062 \text{ meV}, B_4^d = -6.3 \times 10^{-6} \text{ meV} \) and \(|E| = 2.1 \times 10^{-3} \text{ meV} \). The first term in Eq. (2) is the leading term, and thus \(M_S \) remains a reasonably good quantum number. The splitting pattern with the above parameters is shown in Fig. 3. Magnetic neutron scattering theory leads to the selection rules \(\Delta M_S = 0, \pm 1 \) for INS, i.e., transitions between adjacent levels are allowed, see the arrows in Fig. 3. We can thus immediately assign the observed INS bands I–IV in Fig. 2 as given in the second column of Table I. Fitting the eigenvalues of Eq. (2) to the observed band energies yields the parameter values at the bottom of Table I. Both \(|B_4^d| \) and \(|E| \) are much smaller than \(|D_{\text{cluster}}| \), but they are essential for a proper description, and they are responsible for the deviations from a regular spacing of the peaks in Fig. 2(a). The parameter values at ambient pressure are the same within experimental accuracy as those derived from the data in Ref. 2. The negative \(D_{\text{cluster}} \) is significantly pressure dependent, its value decreasing linearly by 3.8% between ambient pressure and 12 kbar. This leads to a reduction of the energy barrier, i.e., the energy difference between the \(M_S = \pm \frac{1}{2} \) and \(M_S = \pm \frac{3}{2} \) levels, from 1.260(5) meV at ambient pressure and 12 kbar pressure, respectively.

The only pressure experiments on single-molecule mag-
nets reported in the literature are for Mn\textsubscript{12}-acetate. From the pressure dependence of the low temperature magnetization it was concluded that pressure produces a geometrical molecular isomer of Mn\textsubscript{12}-acetate with significantly faster relaxation.8 On the other hand, changes in the position of the steps in the hysteresis of Mn\textsubscript{12}-acetate under pressure were ascribed to an increase of the axial anisotropy splitting with pressure.8 Our experimental finding for Mn\textsubscript{4} that the axial anisotropy splitting is decreasing with pressure is unambiguous. With the following simplified model we account for this decrease by correlating it with the expected structural changes of the molecule under pressure. We assume an isotropic compressibility for the core defined by the three Mn3+ ions and the Mn4+ ion in Fig. 1(b). All the metal-ligand bonds in this core are either Mn3+–O or Mn4+–O bonds, and taking average linear compressibilities (d) from the literature we calculate d(12 kbar)/d(ambient)=0.9975.9 The Mn3+–Br bonds in Fig. 1 are significantly softer and more compressible than the Mn–O bonds. A ratio of force constants k(Mn3+–O)/k(Mn3+–Br)=4.2 is obtained from literature values based on Raman experiments.10,11 In terms of compressibility we thus calculate a ratio d(12 kbar)/d(ambient)=0.993 for the Mn3+–Br bonds. The net effect of pressure in this simplified model is an increase of the apex angle at the Br position of the molecule. Between ambient and 12 kbar pressure this angle \(\alpha\), defined in Fig. 1(b), increases from 42.5° to 47.5°. Since the Jahn-Teller axis of the Mn3+ coordination is close to the Mn–Br direction, pressure induces an inward tilt of the three Mn3+ anisotropy axes, thus decreasing the cluster anisotropy. The value of the axial anisotropy parameter of the cluster in the \(S=\frac{3}{2}\) ground state can be expressed as:12

\[
D_{\text{cluster}} = \frac{105}{484} D_{\text{Mn}^{3+}} (3 \cos^2 \alpha - 1) + \frac{35}{121} D_{33} - \frac{7}{44} D_{34},
\]

where \(D_{\text{Mn}^{3+}}\) is the single ion D parameter of the Mn3+, \(D_{33}\) and \(D_{34}\) are magnetic dipole–dipole interaction terms between Mn3+–Mn3+ and Mn3+–Mn4+, respectively. These latter two terms in Eq. (3) can be calculated,12 they are typically an order of magnitude smaller than the experimental \(D_{\text{cluster}}\), and their sum is practically pressure independent, see Table II. We can thus definitely rule out that the observed reduction of \(D_{\text{cluster}}\) with pressure is due to a change in the dipole–dipole interaction. On the other hand, the \((3 \cos^2 \alpha - 1)\) factor in the first term of Eq. (3) has a significant effect. With the estimated increase of \(\alpha\) by 0.25° at 12 kbar we calculate a 2.1% reduction of the \(D_{\text{cluster}}\) value at 12 kbar. This is to be compared with the reduction of 3.8% derived experimentally. We note that for \(\alpha=42.5°\) in Mn\textsubscript{3+} the function \((3 \cos^2 \alpha - 1)\) is highly susceptible to minute changes of \(\alpha\). Since our compressibility model is rather crude, the estimated pressure dependence of \(\alpha\) has a relatively large uncertainty, which is amplified for the factor \((3 \cos^2 \alpha - 1)\). In this rough estimate we have neglected any pressure dependence of \(D_{\text{Mn}^{3+}}\) in Eq. (3). According to Ref. 13 \(D_{\text{Mn}^{3+}}\) can either increase or decrease with increasing crystal field strength,
TABLE II. D_{cluster} values of Mn$_2$O$_3$(OAc)$_3$(dbm)$_3$ (X=Cl, Br) determined by INS. D_{cl} is the calculated sum of the two dipole–dipole contributions D_{22} and D_{34} in Eq. (3). D_{Mn^3+} is the single-ion D parameter calculated from D_{cluster} using Eq. (3). α is the angle at the apex of the cluster defined in Fig. 1(b), and $(3 \cos^2 \alpha - 1)$ is the factor in the first term of Eq. (3).

<table>
<thead>
<tr>
<th>X</th>
<th>D_{cluster} (meV) observed</th>
<th>D_{cl} (meV) calculateda</th>
<th>D_{Mn^3+} (meV) calculated</th>
<th>α ($^\circ$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br, ambient</td>
<td>$-$0.0627(1)</td>
<td>0.0082</td>
<td>$-$0.52</td>
<td>42.5f</td>
</tr>
<tr>
<td>Br, 12 kbar</td>
<td>$-$0.0603(3)</td>
<td>0.0083</td>
<td>$-$0.52d</td>
<td>42.75e</td>
</tr>
<tr>
<td>Cle</td>
<td>$-$0.0656</td>
<td>0.0085</td>
<td>$-$0.68</td>
<td>45.1f</td>
</tr>
</tbody>
</table>

aReference 2.

bCalculated using Ref. 12.

cReference 3.

dAssumed to be pressure independent.

eCalculated as described.

depending on its absolute value. In Mn$_{12}$-acetate, where the Mn$^{3+}$ coordination is very similar to the title compound, a small increase of $|D_{\text{Mn}^3+}|$ with pressure is deduced from magnetization experiments. Our assumption that the decrease of $|D_{\text{cluster}}|$ with pressure in our Mn$_3$ cluster is not due to a decrease of $|D_{\text{Mn}^3+}|$ is thus justified. Despite the approximate character of our model, we therefore feel confident that we have identified the principal structural element in Mn$_3$, which leads to a decrease of the axial anisotropy under hydrostatic pressure. The compression of the apex with the resulting increase of α is schematically represented in Fig. 1(b) by the grey Br position.

Chemical variation is another way of tuning the cluster anisotropy. In Table II we compare the effect of hydrostatic pressure on the Mn$_3$Br compound with a chemical substitution of Br by Cl at ambient pressure. While physical pressure mainly affects the $(3 \cos^2 \alpha - 1)$ factor in the first term of Eq. (3), substitution of Br by Cl strongly increases the value of the negative single-ion anisotropy parameter D_{Mn^3+} and thus more than compensates for the decrease of the $(3 \cos^2 \alpha - 1)$ factor. The result of the chemical substitution from Br to Cl is thus an increase of $|D_{\text{cluster}}|$, while hydrostatic pressure of 12 kbar reduces it by about the same amount.

In conclusion, we have presented the first direct determination of the pressure dependence of the axial anisotropy splitting in a SMM. Hydrostatic pressure of 12 kbar reduces the energy barrier between plus and minus spins by 3.8%. The reduction mainly results from a tilting of the single ion anisotropy axes of Mn$^{3+}$ under pressure. Very recent INS experiments confirm that in the SMM Mn$_{12}$-acetate $|D_{\text{cluster}}|$ slightly increases with pressure. This different behavior confirms our conclusion that the pressure dependence is a property determined by the specific structure of a SMM molecule.

ACKNOWLEDGMENTS

The authors thank Oliver Waldmann and Graham Carver for fruitful discussions. This work was financially supported by the Swiss National Science Foundation (NFP 47) and the European Union (TMR Molnanomag, No. HPRN-CT-1999-00012).

