Single-Molecule Magnets: A Mn$_{25}$ Complex with a Record S = 51/2 Spin for a Molecular Species

Muralee Murugesu,† Malgorzata Habrych,† Wolfgang Wernsdorfer,‡ Khalil A. Abboud,† and George Christou*†

Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, and Laboratoire Louis Néel-CNRS, BP166, 25 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France

Received December 12, 2003; E-mail: christou@chem.ufl.edu

Single-molecule magnets (SMMs) offer a molecular (or “bottom-up”) approach to nanoscale magnetic materials.† They derive their properties from a combination of a large spin (S) and an Ising (easy-axis) magnetooanisotropy (negative zero-field splitting parameter, D). Several classes of SMMs are now known,‡ in most containing MnIII, but there is a continuing need for new SMMs to improve our understanding of this phenomenon. We now report a new Mn$_{25}$ SMM, which (i) is mixed-valent 6MnII, 18MnIII, MnIV; (ii) has an unusual five-layer structure; and (iii) possesses a record S = 51/2 ground-state spin for a molecular species. In the latter context, this complex is a new addition to the family of high-spin molecules, only some of which are also SMMs; most contain MnII,III or FeIII, and only very few possess S > 10.‡

A stirred slurry of MnCl$_2$
•H$_2$O (3 equiv), pyridine-2,6-dimethanol (pdmH$_2$; 10 equiv), and NaN$_3$ (10 equiv) in MeOH/MeCN (1:2 v/v) was treated with NMe$_4$OH (1 equiv). This gave a dark brown solution from which slowly crystallized [Mn$_{25}$O$_{18}$(OH)$_2$(N$_3$)$_{12}$]$_{3-}$Cl$_2$(pdm)$_6$(pdmH)$_6$(Cl)$_2$•12MeCN (1:12MeCN in ~30% yield). Complex I crystallizes in triclinic space group P1. The Mn$_{25}$ cation lies on an inversion center and has a barrel-like cage structure (Figure 1). The $12\mu_2$-O$^2-$, $6\mu_3$-O$^2-$, and $2\mu_3$-OH$^-$ ions hold the core together, as well as chelating/bridging pdm$^{2-}$/pdmH$^-$ and both terminal and bridging N$_3^-$ groups. The metal oxidation states and the protonation levels of O$_2^-$, OH$^-$, and pdmH$-$ O atoms were established by Mn and O bond valence sum calculations,§ inspection of metric parameters, and detection of MnIII Jahn–Teller (JT) elongation axes. The core (Figure 2) may be dissected into five parallel layers of three types with an ABCBA arrangement. Layer A is a Mn$^{III}_3$ triangular unit (Mn1, Mn2, Mn4) with a capping μ_3-OH$^-$ ion; layer B is a Mn$^{III}_6$ triangle (Mn3, Mn5, Mn6, Mn7, Mn8, Mn9) comprising three corner-sharing Mn$^{III}_3$ triangles; and layer C is a Mn$^{III}_6$ hexagon (Mn11−Mn13, Mn11a−Mn13a) with a central MnIV ion (Mn10). Layer C has the Anderson-type structure seen in some Mn complexes.¶ Each layer is held together and linked to its neighboring layers by a combination of oxide, alkoxide, and/or azide bridges. The outer coordination shell is occupied by pdm$^{2-}$, pdmH$^-$, and terminal azide ligands (Figure 1). Each Cl$^-$ anion is hydrogen-bonded to a single μ_3-OH$^-$ group. There are no significant intermolecular interactions. There are two types of MnIII ions: those in layer B are nearly octahedral with JT axially elongated MnIII−O bonds (2.147(3)−2.360(4) Å), whereas those in layer C are seven-coordinate and nearly pentagonal bipyramidal, with axially elongated MnIII−O bonds (2.283(4)−2.331(4) Å).

Solid-state DC magnetic susceptibility (χ_M) data were collected in the 5.0−300 K range in a 1 kG (0.1 T) field. The χ_MT value steadily increases from 88.4 cm3 K mol$^{-1}$ at 300 K to a maximum of 310 cm3 K mol$^{-1}$ at 15 K, before dropping to 289 cm3 K mol$^{-1}$ at 5.0 K (Figure 3, inset). The data strongly suggest a very large ground-state spin; the 5 K value suggests an S = 51/2 value.

To identify the ground state, magnetization (M) data collected in the 1.8−4.0 K and 1−8 K ranges were fit by matrix diagonalization to a model that assumes only the ground state is populated, includes axial zero-field splitting (DΔS2) and

Figure 1. Structure of the cation of I. Color code: green, MnIV; purple, MnIII; yellow, MnII; red, O; blue, N; gray, C.

Figure 2. Centrosymmetric core of the cation of I (top) and its three types of constituent layers (bottom), color coded for clarity. Atom color code: green, MnIV; purple, MnIII; yellow, MnII; red, O; blue, N.
Zeeman interactions, and incorporates a full powder average. We used only low fields (≤8 kG) to avoid problems associated with M_D levels from excited states with higher S values crossing with the ground state, which would lead to an erroneously high value for the ground-state S. The fit (solid lines in Figure 3) gave $S = 51/2$, $D = -0.022(1)$ cm$^{-1}$, and $g = 1.72(1)$. But the fits for $S = 49/2$ and $53/2$ were only slightly inferior, and we thus conclude that the ground-state spin of I is $S = 51/2 ± 1$. Data collected up to 4 or 7 T could not be satisfactorily fit. Such a large S value is supported by the in-phase AC susceptibility signal (in zero DC field) of ~ 315 cm$^{-1}$ K mol$^{-1}$ at 5 K, indicating the large χ_MT value of Figure 3 not to be an artifact of the applied DC field.

In fact, an $S = 51/2$ ground state is consistent with the expected spins of layers A, B, and C of 15/2, 0, and 21/2, respectively. These are the values calculated for (i) three ferromagnetically coupled MnIII spins in layer A, (ii) an antiferromagnetically coupled MnIII triangle in layer B; and (iii) six MnIII spins in layer C strongly antiferromagnetically coupled to the central MnIII spin and thus aligned parallel to each other. Parallel alignment of the spins of layers A and C as a result of antiferromagnetic interactions with Mn ions in layer B then predicts a molecular spin of $S = 15/2 + 21/2 + 15/2 = 51/2$, rationalizing the high observed S value and supporting a conclusion that I has an $S = 51/2$ ground state.

The $S = 51/2$ ground state and negative D value suggested that I might be an SMM. The upper limit to the relaxation barrier is $(S^2 - 1/4)D$ for a half-integer spin, or only 14.3 cm$^{-1}$ for I, but the actual (or effective) barrier (U_{rel}) will be significantly less due to magnetization quantum tunneling through the barrier. Single crystals of 1-12MeCN were therefore investigated using a micro-SQUID,9 and the obtained M vs applied DC field sweeps (Figure 4) exhibited hysteresis below ~ 0.6 K, their coercivities increasing with decreasing temperature as expected for an SMM. Fitting of magnetization decay data collected in the 0.04–1.0 K range gave $U_{rel} = 8.3$ cm$^{-1} = 12$ K. The low temperature at which I is an SMM is clearly due to the small D value, consistent with the nearly perpendicular disposition of the MnIII anisotropy axes.

Complex 1 is the largest mixed-valent MnII/MnIII/MnIV cluster and the largest spin SMM to date (the next highest being an Fe$_{19}$ SMM with $S = 33/2$). It also possesses the largest S for an isolated molecule: [Mo$_2$Mn$_9$(CN)$_{24}$(MeOH)$_{12}$] has also been suggested to have $S = 51/2$, although the situation is unfortunately complicated by strong intermolecular interactions and long-range ferromagnetic ordering below 44 K.M The related W complex has an $S = 39/2$ ground state.M The next largest spin for any molecule after $S = 51/2$ is the $S = 23$ of a recently reported Fe$_{14}$ complex.M

Acknowledgment. This work was supported by the National Science Foundation.

Supporting Information Available: Crystallographic details (CIF), Mn bond valence sums, and magnetism data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(5) (a) Anal. Calcd (Found) for doped I: C, 25.72 (25.61); H, 2.36 (2.68); N, 17.14 (17.15). (b) Crystal data for I-12MeCN: $c_{04}=\text{Cu}_{0.34}^{2+}\text{Cl}_{0.66}\text{Me}_{0.50}\text{S}_{0.44}$ $\mu_{eq}=15.892(18)$, $R=16.502(9)$, $c = 17.2565(8)$, $\alpha = 98.881(2)$, $\beta = 99.923(2)$, $\gamma = 117.003(2)$, $Z = 1$, $V = 3830(3)$, $D = 1.494$ g cm$^{-3}$, $F_{000} = 173$. Final $R_1 = 5.55$ and $wR_2 = 15.31$. The crystal was a small dark brown plate; an absorption correction was applied.

(6) (a) Bond valence sum calculations for MnII, MnIII, and MnIV ions gave oxidation state values of 1.95–2.02, 2.90–3.02, and 3.90, respectively.

(7) Of course, other ways of qualitatively rationalizing an $S = 51/2$ state in such a large molecule are also feasible.