Dodecanuclear and octanuclear manganese rods

Euan K. Brechin, Monica Soler, George Christou, Madeleine Helliwell, Simon J. Teat and Wolfgang Wernsdorfer

*Department of Chemistry, The University of Manchester, Oxford Road, Manchester, UK M13 9PL. E-mail: euan.k.brechin@man.ac.uk; Tel: 0161-275-7857

Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA

CLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire, UK WA4 4AD

Laboratoire Louis Néel-CNRS, 38042 Grenoble, Cedex 9, France

Received (in Cambridge, UK) 21st February 2003, Accepted 3rd April 2003

First published as an Advance Article on the web 23rd April 2003

The reaction of the neutral triangle \([\text{Mn}_3\text{O}(\text{O}_2\text{O}_2\text{CR})_3\text{O}(\text{O})_3]^{2+}\) with 1,1,1-tris(hydroxymethyl)ethane (H\text{thme}) affords novel dodecanuclear and octanuclear manganese complexes with unusual ladder-like cores built from edge-sharing triangles.

The synthesis of polynuclear transition metal clusters has recently been driven by the discovery that molecules with large numbers of unpaired electrons can function as nanoscale magnets.\(^1\) The first single-molecule magnet (SMM) \([\text{Mn}_3\text{O}(\text{acac})_6\text{py}](\text{H}_2\text{O})]^{2+}\) was discovered in 1993 and since then the vast majority of SMMs reported have contained either manganese or iron.\(^2\) Each of these SMMs has been synthesised using an appropriate metal and coordinatively flexible organic ligands such as carboxylates, \(\beta\)-diketonates and alkoxides. The tripodal ligand 1,1,1-tris(hydroxymethyl)ethane (H\text{thme}) has been used extensively in the synthesis of oxovanadium and o xo molybdenum clusters\(^3\) but has been sparingly used with other metals.\(^4\) Following our initially encouraging results using this ligand with manganese and iron,\(^5,6\) we herein report the synthesis, structure and initial magnetic properties of new dodecanuclear and octanuclear manganese rods based on a series of edge-sharing Mn\text{thme} units.

The reaction of the triangular Mn\text{thme} complex \([\text{Mn}(\text{PhCO}_2\text{})(\text{spiv})(\text{thme})_2\text{py}][\text{H}_2\text{O}])\) with 1 equivalent of H\text{thme} in MeCN gives the mixed-valent complex \([\text{Mn}_{12}\text{O}_4\text{OH}_{2}\text{PhCO}_2\text{thme}_3\text{py}][\text{H}_2\text{O}])\). In this case the core consists of ten edge-sharing \([\text{Mn}_3\text{O}]\) triangles or butterfly units. All twelve Mn ions are in distorted octahedral geometries with the ten Mn\text{thme} ions displaying the expected Jahn-Teller elongations. The four thme\text{thme} ligands are fully deprotonated, sitting directly above and below the \([\text{Mn}_3\text{O}_2\text{OH}]^{2+}\) plane, and are of two types: two use two of their arms in a \(\mu_2\)-fashion with the third arm acting as a \(\mu_3\)-bridge; the reverse situation applies for the other two thme\text{thme} ligands which have two \(\mu_2\)-arms and one \(\mu_3\)-arm. The PhCO\text{thme} ligands bridge in their usual \(\mu_3\)-manner with the remaining coordination sites occupied by two pyridines. The four \(\text{O}_2\text{Ph}\) (O1, O18, O22, O34) and two \(\text{OH}^{−}\) ions (O19, O23) ligands are \(\mu_2\)-bridging respectively.

Solid-state dc magnetization measurements were performed on 1 in the range 5–300 K in a field of 5.0 kG. The \(\chi_T\) value of approximately 30 cm\(^3\) K mol\(^−1\) at 300 K remains constant as the temperature is decreased until ca. 150 K when it begins to decrease to a value of ca. 23 cm\(^3\) K mol\(^−1\) at 8 K, suggesting that the molecule has a high spin ground state. In order to determine the ground state spin, magnetization data were collected in the ranges 1.8–10 K and 10.0–4.0 T. The data were fit giving \(S = 7\), \(g = 1.98\) and \(D = −0.13\) K. When fields up to 7 T were employed the best fit gave \(S = 10\), \(g = 1.78\) and \(D = −0.30\) K, but this was of poorer quality than the low field data. This behaviour is characteristic of low-lying excited states with \(S\) values greater than the ground state of \(S = 7\). Low-lying excited states are a common problem when Mn\text{thme} ions are present since they exhibit weak exchange coupling. The use of only low-field data in the fits can avoid this problem and provide more reliable results.
For complex 2, the $\chi_M T$ value at 300 K of approximately 24 cm3 K mol$^{-1}$ drops slowly as the temperature is decreased until ca. 20 K where it then increases to a value of ca. 18 cm3 K mol$^{-1}$ at 8 K. Again this suggests that the molecule has a high spin ground state. Magnetization data (Fig. 2) collected in the ranges 1.8–10 K and 0.10–4.0 T gave a best fit of $S = 6$, $g = 1.81$ and $D = -0.36$ K. The large spin ground states for both complexes presumably arise from the triangular [Mn$_3$] building blocks in each cluster and thus the presence of a number of competing exchange interactions.

Ac magnetization measurements were performed on 1 and 2 in the 1.8–10 K range in a 3.5 G ac field oscillating at 50–1000 Hz. For both complexes frequency dependent ac signals are seen below approximately 3 K but no peaks are observed.

Quantum tunnelling of magnetization (QTM) studies were performed on 1 by magnetization measurements on single crystals using an array of micro-SQUIDs. Relaxation data were collected in the 1.8–20 K where it then increases to a value of $D = 0.16$ K indicative of QTM. Single crystal studies of 2 are currently under way and will be reported at a later date.

In summary compounds 1 and 2 represent new structural types in manganese carboxylate chemistry and 1 is an important new addition to the small family of SMMs. It also suggests that the use of triangular building blocks is an excellent way to make large metal clusters with non-zero spin ground states.

This work was supported by Lloyd’s of London Tercentenary Foundation and the National Science Foundation.

Notes and references

1 Complex 1 analysed satisfactorily (C, H, N) as 1-McCN-Et$_2$O. Complex 2 analysed satisfactorily (C, H, N) as 2-McCN-Et$_2$O. Crystals were kept in contact with mother liquor to avoid solvent loss and were crystallographically identified as E=2.25Et$_2$O and 2-McCN-H$_2$O.

Crystal data for 1: $a = 18.4232(10)$, $b = 28.2896(15)$, $c = 26.5871(14)$ Å, $\alpha = 90$, $\beta = 90.085(2)$, $\gamma = 90$, $V = 13861.2(13)$ Å3, $Z = 4$, $T = 150(2)$ K, $\mu = 1.132$ mm$^{-1}$. Synchrotron radiation (CLRC Daresbury Laboratory, Station 9.8 $\lambda = 0.6687$ Å). 10618 reflections collected, 19860 unique, (Rint = 0.0492) $2\theta_{max} = 44.83^\circ$, R1 = 0.0372 [3320 data with $I > 2(\sigma(I))]$, wR2 = 0.2086 for 1815 parameters. Crystal data for 2: $a = 12.552(2)$, $b = 25.289(3)$ Å, $\alpha = 90$, $\beta = 108.264(4)$, $\gamma = 90$, $V = 5203(12)$ Å3, $Z = 2122.42$, Z = 2, $T = 150(2)$ K, $\mu = 1.012$ mm$^{-1}$. Synchrotron radiation (CLRC Daresbury Laboratory, Station 9.8 $\lambda = 0.6685$ Å), 7735 reflections collected, 5119 unique, (Rint = 0.0359) $2\theta_{max} = 40^\circ$, R1 = 0.0572 [3639 data with $I > 2(\sigma(I))]$, wR2 = 0.1574 for 533 parameters. Data collection, structure solution and refinement used programs SMART, SAINT and SHELXL. See http://www.rsc.org/suppdata/cc/b3/b302057f/ for crystallographic data in cif or other electronic format.

