Stepwise assembly of a polyoxovanadate from mononuclear units in an organic solvent: carboxylate-stabilised fragments in the conversion of [VOCl₄]²⁻ to [V₁₅O₃₆]⁵⁻

Gail B. Karet,a Ziming Sun,b William E. Streib,a John C. Bollinger,a David N. Hendricksonb* and George Christou*a

a Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, IN 47405-7102, USA.
E-mail: christou@indiana.edu
b Department of Chemistry-0358, University of California at San Diego, La Jolla, CA 92093-0358, USA.
E-mail: dhendrickson@ucsd.edu

Received (in Bloomington, IN, USA) 6th August 1999, Accepted 30th September 1999

The [VOCl₄]²⁻/AgOAc reaction system in MeCN gives [V₅O₅Cl(OAc)]₂⁻, [V₉O₁₉(OAc)]³⁻ and [V₁₂O₃₂]⁴⁻ for reagent ratios of 1:2, 1:3 and 1:4, respectively: the V₅ and V₉ cores are fragments of the V₁₅ core, suggesting the V₅ and V₉ units are carboxylate-stabilised intermediates in the assembly of the V₁₅ polyoxovanadate.

Polyoxometalates represent a venerable and greatly explored area of early transition metal chemistry.¹–⁴ They are of interest from a variety of viewpoints, including structural aesthetics,¹–⁴ routes to new materials,³–⁷ catalysis⁸ and medical applications,⁹ to name but a few. These molecular species often possess cage-like structures and in many cases encapsulate a small neutral or charged group.³–⁴,¹⁰ One such example (amongst many) is the encapsulation of Cl⁻, Br⁻ or CO₂²⁻ guests within the approximately spherical [V₁₅O₃₆]⁵⁻ polyoxovanadate ‘host’ cage.¹¹

The steps by which a polyoxometallate such as [V₁₅O₃₆]⁵⁻ assemblies and the precise importance of the encapsulated guest to the identity and stability of the host are important to know. Bowl-like polyoxovanadates that can be considered structural fragments of (and putative intermediates to) cage-like structures are rarely encountered but one such example is approximately hemispherical [V₅O₉Cl(MeCN)]²⁻ containing an MeCN molecule in the concave cavity.¹² In the somewhat related field of fullerene chemistry, the preparation of structural fragments of the fullerene cage, so-called buckybowls, is a very topical area.¹³ In this report, we describe the development of methodology that allows possible intermediates in the assembly of the [V₁₅O₃₆]⁵⁻ cage to be stabilized by carboxylate ligands and identified. This approach has also provided access to the empty [V₁₅O₃₆]⁵⁻ ‘host’ without a guest.

The reaction of [NEt₄][VOCl₄] with 2 equiv. of NaOAc in MeCN under nitrogen, followed by brief exposure to air gives a deep green solution from which can be obtained [NEt₄][V₅O₅Cl(OAc)]MeCN 2 (4VIV, VV) in 20–25% yield: this procedure is analogous to that previously reported for [NEt₄][V₅O₅Cl(OAc)₂]H₂O.¹¹ A related reaction using AgOAc in place of NaOAc and omitting the aerial oxidation step also gives 2 in comparable yield. Increase of the [VOCl₄]²⁻:AgOAc reaction ratio to 1:3 gave instead a blue solution which, after ca. 50% volume reduction in vacuo and filtration, slowly produced dark blue–black crystals of [NEt₄][V₅O₅Cl(OAc)]₂MeCN 3 (5IV, 4V) in 20–30% yield. Further increase of the reaction ratio to 1:4 gave a purple solution which, after ca. 50% volume reduction and filtration, produced dark purple–black crystals of [NEt₄][V₅O₅Cl]·1.28MeCN 4 (8VIV, 7VV) in 45–50% yield. The anion of 2 (Fig. 1) has the same [V₃OCl]²⁻ core reported previously¹⁴ for [V₅O₅Cl(OAc)]²⁻, with a V₅ square-pyramid (VV at the apex) and O₂⁻ and Cl⁻ ions triply and quadruply bridging the vertical and basal faces, respectively. The novel [V₅O₅] core of 3 (Fig. 2) may be considered an extension of the core of 2, giving an approximately hemispherical bowl that contains an anti,anti-bridging AcO⁻ group. This is reminiscent of [V₁₂O₃₂(MeCN)]⁴⁻ where a MeCN molecule is held inside a bowl.¹² The other AcO⁻ groups are like those in 2, i.e. bridging V–V edges of the [V₅] unit and blocking further aggregation. The [V₁₂O₃₂]⁴⁻ anion of 4 (Fig. 3) is a known polyoxovanadate, but in this case it is empty, previous examples containing an anionic guest ion inside the cage.¹¹

Given the similar synthetic procedures to 2–4, it is reasonable to suggest that the [V₅O₅] and [V₉O₁₉] cores of 2 and 3 may be...

Fig. 1 ORTEP representation with 50% probability ellipsoids of the [V₅O₅Cl(OAc)]²⁻ anion of 2.

Fig. 2 ORTEP representation with 50% probability ellipsoids of the [V₅O₅Cl(OAc)]²⁻ anion of 3.
considered carboxylate-stabilised intermediates in the assembly of the $[\text{V}_5\text{O}_{16}]^{5-}$ ion of 4 in MeCN, and that the minimal sequence in its formation is that in eqn. (1). This is supported by

$$[\text{VO}]^{2+} \rightarrow [\text{V}_2\text{O}_6]^{4-} \rightarrow [\text{V}_2\text{O}_10]^{2+} \rightarrow [\text{V}_4\text{O}_{16}]^{3-}$$

(1)

the structural relationship between the $[\text{V}_5\text{O}_{10}]$ core and $[\text{V}_5\text{O}_{16}]^{3-}$ (Fig. 3). A common $[\text{V}_5\text{O}_{12}]$ limit is seen: in 3, the O atoms at left and right of this $[\text{O}(11)/\text{O}(12)$ and $\text{O}(24)/\text{O}(26)$ of Fig. 2] bind to only two V atoms $[\text{V}(1)$ and $\text{V}(9)]$, whereas in 4 they bind to four V atoms $[\text{V}(5)$, $\text{V}(5')$, $\text{V}(6)$, $\text{V}(6')$ of Fig. 3] allowing the $[\text{V}_5\text{O}_{16}]$ shell to form. Interestingly, the complete $[\text{V}_5\text{O}_{10}]$ core of 3 is a fragment of the $[\text{V}_{18}\text{O}_{32}]$ cage-like polyoxovanadate with T_d symmetry. 4 Note that the acetate O atoms of 2 and 3 occupy sites that would otherwise be occupied by O^2- ions giving higher nuclearity products. The AgOAc reagent that causes formation of 2-4 from 1 clearly has multiple functions: (i) as a source of AcO^- groups both to stabilise the fragments in 2 and 3 and to act as Brønsted bases to facilitate formation of O^2- ions from H$_2$O molecules $[\text{O}:\text{V} = 1:1 (1), 1.8:1 (2), 2.1:1 (3)$ and $2.4:1 (4)]$; (ii) as an Cl^- abstracting reagent; and (iii) as an oxidizing agent [average V oxidation states are $4+$ (1), $4+$ (2), $4.4+$ (3) and $4.47+$ (4)]. It is thus reasonable that the AgOAc:1 ratio is so important. Indeed, treatment of redissolved 3 in MeCN with additional AgOAc gives a colour change from blue to purple and subsequent crystallisation of 4.

The solid-state effective magnetic moment (μ_{eff}) of 3 gradually decreases from 3.62 μ_B at 300 K to 3.15 μ_B at 2.00 K. For 4, μ_{eff} gradually decreases from 2.86 μ_B at 300 K to 2.67 μ_B at 30.0 K, and then increases slightly to 2.83 μ_B at 3.00 K. Fitting of magnetization data collected in the 0.05–5 T and 2.00–4.00 K ranges gave S = 3/2, g = 1.70 and D = 0.00 cm$^{-1}$ for 3 and $S = 3/2$, $g = 1.62$ and $D = 0.00$ cm$^{-1}$ for 4. The magnetic properties of $[\text{V}_5\text{O}_3\text{C}_2(\text{O}_2\text{CR})_3]^{4-}$ species such as 2 have been previously described. 14 More detailed analysis of the exchange interactions in 3 and 4 will be provided elsewhere. 15

The formation of 2-4 from 1 suggests that stepwise control of the assembly of polyoxometallates may indeed be feasible by suitable choice of solvent and reagents (and their ratios) allowing access to a variety of bowl-like species. Further experimentation along these lines is in progress.

This work was supported by the U.S. Department of Energy.

Notes and references

1 Further volume reduction or addition of e.g. Et$_2$O gives significantly greater yields of 3 and 4 but the coloured products are contaminated with white solids. The described procedures avoid this but at the expense of large yields. Dried solids are hygroscopic and analysed satisfactorily (C, H, N).

‡ Crystal data: 2-MeCN: $\text{C}_3\text{H}_6\text{O}_3\text{Cl}_2\text{V}_2$, $M_1 = 971.89$, monoclinic, space group $C2/c$, $a = 16.111(2), b = 14.900(2), c = 33.67(5)$, $\beta = 91.39(1)$, $\bar{U} = 8081.8^2$, $Z = 8$, $T = 101$ K, $R(R_w) = 0.0361 (0.0411)$ using 6432 reflections with $F > 3\sigma(F)$.

3-MeCN: $\text{C}_9\text{H}_8\text{O}_3\text{V}_2$, $M_1 = 150.55$, triclinic, space group $P\bar{1}$, $a = 13.393(1), b = 23.031(1), c = 10.804(1)$, $\alpha = 90.81(1), \beta = 111.91(1), \gamma = 94.15(1)$, $U = 7360.8^2$, $Z = 2$, $T = 109$ K, $R(R_w) = 0.0773 (0.0563)$ using 5037 reflections with $F > 3\sigma(F)$. One cation lies on a non-crystallographic mirror plane, disordering its four CH$_2$ carbon atoms about two well resolved positions.

4-1.28MeCN: $\text{C}_{423}\text{H}_{804}\text{O}_{332}\text{V}_{25}$, $M_1 = 2043.92$, monoclinic, space group $C2/c$, $a = 22.105(3), b = 13.784(2), c = 26.604(4)$, $\beta = 107.56(1), U = 7728.8^2$, $Z = 4$, $T = 101$ K, $R(R_w) = 0.1111 (0.1125)$ using 4190 reflections with $I > 2.33\sigma(I)$. The MeCN molecules and three of the cations were badly disordered.

CCDC 1821440. See http://www.ccdc.cam.ac.uk/structures/19992249/ for crystallographic files in .cif format.

Communication 9/06448F