New Metal-Binding Mode for Adenine: A Bidentate (N6,N7) Bridging Mode in the Complex [MoO2(COCHF2)2(9-EtAH)(MeCN)]2(BF4)2·2MeCN

Elizabeth F. Day, Charles A. Crawford, Kirsten Foltin, Kim R. Dunbar, and George Christou

Department of Chemistry and Molecular Structure Center
Indiana University, Bloomington, Indiana 47405-4001
Department of Chemistry, Michigan State University
East Lansing, Michigan 48824

Received June 13, 1994

The recognition that cis-PtCl2(NH3)2 (cisplatin) is an antitumor agent and its subsequent approval as a chemotherapeutic drug have led to an explosive growth of interest in the potential antitumor activity of a wide variety of transition- and main-group-metal complexes. A major objective has been to identify agents that are active against cancers other than those treated by cisplatin, and the majority, by far, of these studies have employed mononuclear metal species. Our own interest centers on certain dinuclear complexes of Re3, Ru3, and Rh3+ that have been identified as possessing significant carcinocstatic activity. A common structural feature of these compounds is the presence of at least two bridging carboxylate groups. The goals of our research are to develop the substitution chemistry of these and related dinuclear species with purine bases and their corresponding nucleosides and nucleotides, and to elucidate the various factors that determine their possible binding modes to DNA. This information should provide insights into the mechanism of antitumor activity and serve as a springboard for the design of second-generation complexes with concomitant increased activity levels and decreased toxicity.

In this report, we describe the synthesis and characterization of the novel product of the reaction between 9-ethyladenine (9-EtAH) and [MoO2(COCHF2)2(9-EtAH)(MeCN)]2(BF4)2 (R = Me, 1a; CHF2, 1b), one of several dimeric carboxylates being employed in our studies. Treatment of a bright pink solution of 1b in MeCN (typically 15 mM) with 2 equiv of 9-EtAH at room temperature slowly gives a color change to dark red. After 24 h, Et2O was vapor-diffused into the reaction solution to give red crystals of [MoO2(COCHF2)2(9-EtAH)(MeCN)]2(BF4)2·2MeCN (2). Similar results were obtained with complex 1a, and with 9-MeAH. Yields of isolated products are typically 50–60%.

The structure of the cation of 2 (Figure 1) shows two cis 9-EtAH groups ligated in an unprecedented N6,N7-bidentate, bridging mode with the two groups in a “head-to-tail” relative arrangement. An N6,N7 binding mode has been previously observed only for deprotonated 9-substituted-adenine groups.11

The 1H NMR spectroscopy of 2 in CD3CN is consistent with the above figure and the C2 symmetry solid-state structure. The spectrum at −40 °C exhibits 9-EtAH resonances in the aromatic region at 7.59 (H8; s, 1), 7.63 (H6; s, 1), 8.04 (H2; d, 1), and 8.51 (H1; d, 1).

(11) Crystal data for 2: orthorhombic, space group Pnma, a = 9.512(4) Å, b = 18.363(6) Å, c = 22.676(9) Å, Z = 4, V = 3960.8 Å3, dcalc = 1.754 g cm−3. The structure was solved by direct methods (MULTAN78) and refined on F by full-matrix least squares using 1799 unique reflections with F > 3σ(F). All non-hydrogen atoms were refined anisotropically, except for the interstitial MeCN atoms. Hydrogen atoms were placed in fixed, calculated positions on the CHF2CO2 and bound MeCN groups; careful examination of the 9-EtAH groups in a Fourier difference map revealed a single H on each of the ring atoms C2, C8, and N1 and exocyclic N atom N6. These four H atoms were refined isotropically, with H atoms on the Et group now added in fixed, calculated positions. Final R (Rw) values were 0.0575 (0.0544). The final difference map was essentially featureless, the largest peak being 0.79 e Å−3 near Mo.
Figure 2. 1H NMR spectrum in CD$_2$CN at -40°C of complex 2 showing the aromatic proton region and the peak assignments. The insets are expansions of the H1 and H2 regions.

10.32 (H1; d, 1) ppm (Figure 2). The H8 and H1/H6 protons were assigned by use of 8-D-9-EtAH4 and addition of D$_2$O, respectively; the 8.04 ppm resonance is thus H2. Selective decoupling of the 10.32 ppm resonance collapses the H2 signal to a singlet, indicating the former resonance to be due to H1. The coupling constant J(H1--H2) is 3 Hz. Additional resonances from the Et [4.28 (q, 2), 1.40 (t, 3) ppm] and CHF$_3$ [6.64 (t, 1) ppm; $J_{HF} = 53$ Hz] groups complete the spectrum.

It is worth noting at this point that 9-substituted adenines such as 9-EtAH exist as tautomers15 involving the forms I (amine) and II (imine) shown. The amine form I dominates under normal conditions (<0.1% imine form II in 9-EtAH and adenosine)15,16 with little change to this equilibrium occurring on N7 metation with, e.g., Pt$^{2+}$ species.16 In complex 2, however, N6,N7-

(13) At higher temperatures, the resolution of the doublet splitting is lost through line broadening, but the spectrum is otherwise unchanged. The complex is stable at room temperature.

dimetallation has led to a metal-induced proton transfer from N6 to N1 (prototropic change), presumably owing to a dramatic decrease in the pK$_a$ of the N6 amine group,17 which has generated the zwitterionic form III. The latter is normally highly disfavored in free or N7-metallated adenosine (and 9-substituted derivatives) by the large pK$_a$ difference between N1-H and N6-H$_2$ (~4.4 and ~16.7, respectively, in free 9-RAH).16,18 In addition, N6,N7-dimetallation appears to have increased the contribution from imine tautomer II, as indicated by the metric parameters of 2 (Figure 1, caption): C6–N6 [1.285(12) Å] and C2–N3 [1.260(14) Å] are shorter than in free 9-MeAH [1.392(2) and 1.326(2) Å, respectively]19 N7-platinated 9-MeAH [1.34–1.37 and 1.33–1.35 Å, respectively]20 and N1-protonated N7-platinated 9-MeAH$_2^{2+}$ [1.314(6) and 1.302(6) Å, respectively]21 similarly, C6–N1 [1.414(12) Å] and N1–C2 [1.375(14) Å] are longer than in the three other classes of adenosine groups, i.e., 1.357(2) and 1.335(2) Å, 1.34–1.37 and 1.34–1.35 Å, and 1.369(6) and 1.360–1.36(6) Å, respectively. Thus, we conclude that the 9-RAH groups in 2 contain a combination of tautomeric forms II and III, with a greater than usual proportion of the rare imine form (II).

In summary, an unprecedented bidentate, bridging metal-binding mode involving the N6,N7 atoms has been discovered for a 9-substituted adenine in its neutral form, viz., 9-EtAH. This result complements that recently observed for 9-ethylguanine (9-EGH), which displayed a bidentate, bridging mode involving the O6,N7 atoms across the [Rh$_2$]$_{14}^{2+}$ core.22 It is now firmly established, therefore, that dinuclear metal complexes can induce both of these DNA bases to adopt these hitherto unknown and unusual ligation modes, raising the possibility that such binding modes to DNA might be involved in the antitumor activity of dinuclear metal carboxylates and related compounds. Further studies, including detailed assessments of the precise electronic nature of bridging 9-EtAH and 9-EGH, will be reported in due course.

Acknowledgment. K.R.D. and G.C. thank the National Science Foundation for support of this work. We thank Björn Borup for NMR technical assistance.

Supplementary Material Available: Tables of fractional coordinates and isotropic and anisotropic thermal parameters (6 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

